An Early-time Optical and Ultraviolet Excess in the Type-Ic SN 2020oi

Alexander Gagliano, Luca Izzo, Charles D. Kilpatrick, Brenna Mockler, Wynn Vicente Jacobson-Galán, Giacomo Terreran, Georgios Dimitriadis, Yossef Zenati, Katie Auchettl, Maria R. Drout, Gautham Narayan, Ryan J. Foley, R. Margutti, Armin Rest, D. O. Jones, Christian Aganze, Patrick D. Aleo, Adam J. Burgasser, D. A. Coulter, Roman GerasimovChrista Gall, Jens Hjorth, Chih Chun Hsu, Eugene A. Magnier, Kaisey S. Mandel, Anthony L. Piro, César Rojas-Bravo, Matthew R. Siebert, Holland Stacey, Michael Cullen Stroh, Jonathan J. Swift, Kirsty Taggart, Samaporn Tinyanont

Research output: Contribution to journalArticlepeer-review

Abstract

We present photometric and spectroscopic observations of Supernova 2020oi (SN 2020oi), a nearby (∼17 Mpc) type-Ic supernova (SN Ic) within the grand-design spiral M100. We undertake a comprehensive analysis to characterize the evolution of SN 2020oi and constrain its progenitor system. We detect flux in excess of the fireball rise model δ t ≈ 2.5 days from the date of explosion in multiband optical and UV photometry from the Las Cumbres Observatory and the Neil Gehrels Swift Observatory, respectively. The derived SN bolometric luminosity is consistent with an explosion with M ej = 0.81 ± 0.03 M o˙, E k = 0.79 ± 0.09 × 1051 erg s-1, and M Ni56 = 0.08 ± 0.02 M o˙. Inspection of the event's decline reveals the highest Δm 15,bol reported for a stripped-envelope event to date. Modeling of optical spectra near event peak indicates a partially mixed ejecta comparable in composition to the ejecta observed in SN 1994I, while the earliest spectrum shows signatures of a possible interaction with material of a distinct composition surrounding the SN progenitor. Further, Hubble Space Telescope pre-explosion imaging reveals a stellar cluster coincident with the event. From the cluster photometry, we derive the mass and age of the SN progenitor using stellar evolution models implemented in the BPASS library. Our results indicate that SN 2020oi occurred in a binary system from a progenitor of mass M ZAMS ≈ 9.5 ± 1.0 M o˙, corresponding to an age of 27 ± 7 Myr. SN 2020oi is the dimmest SN Ic event to date for which an early-time flux excess has been observed, and the first in which an early excess is unlikely to be associated with shock cooling.

Original languageEnglish (US)
Article number55
JournalAstrophysical Journal
Volume924
Issue number2
DOIs
StatePublished - Jan 10 2022

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'An Early-time Optical and Ultraviolet Excess in the Type-Ic SN 2020oi'. Together they form a unique fingerprint.

Cite this