TY - JOUR
T1 - An AMA1/MSP119 Adjuvanted Malaria Transplastomic Plant-Based Vaccine Induces Immune Responses in Test Animals
AU - Milán-Noris, Evelia M.
AU - Monreal-Escalante, Elizabeth
AU - Rosales-Mendoza, Sergio
AU - Soria-Guerra, Ruth E.
AU - Radwan, Osman
AU - Juvik, John A.
AU - Korban, Schuyler S.
N1 - Publisher Copyright:
© 2020, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2020/10/1
Y1 - 2020/10/1
N2 - Malaria is a tropical human disease, caused by protozoan parasites, wherein a significant number of the world's population is at risk. Annually, more than 219 million new cases are reported. Although there are prevention treatments, there are no highly and widely effective licensed anti-malarial vaccines available for use. Opportunities for utilization of plant-based vaccines as novel platforms for developing safe, reliable, and affordable treatments offer promise for developing such a vaccine against malaria. In this study, a Malchloroplast candidate vaccine was designed, composed of segments of AMA1 and MSP1 proteins, two epitopes of Plasmodium falciparum, along with a GK1 peptide from Taenia solium as adjuvant, and this was expressed in tobacco chloroplasts. Transplastomic tobacco lines were generated using biolistic transformation, and these were confirmed to carry the synthetic gene construct. Expression of the synthetic GK1 peptide was confirmed using RT-PCR and Western blots. Furthermore, the GK1 peptide was detected by HPLC at levels of up to 6 µg g−1 dry weight of tobacco leaf tissue. The plant-derived Malchloroplast candidate vaccine was subsequently tested in BALB/c female mice following subcutaneous administration, and was found to elicit specific humoral responses. Furthermore, components of this candidate vaccine were recognized by antibodies in Plasmodium falciparum malaria patients and were immunogenic in test mice. Thus, this study provided a ‘proof of concept’ for a promising plant-based candidate subunit vaccine against malaria.
AB - Malaria is a tropical human disease, caused by protozoan parasites, wherein a significant number of the world's population is at risk. Annually, more than 219 million new cases are reported. Although there are prevention treatments, there are no highly and widely effective licensed anti-malarial vaccines available for use. Opportunities for utilization of plant-based vaccines as novel platforms for developing safe, reliable, and affordable treatments offer promise for developing such a vaccine against malaria. In this study, a Malchloroplast candidate vaccine was designed, composed of segments of AMA1 and MSP1 proteins, two epitopes of Plasmodium falciparum, along with a GK1 peptide from Taenia solium as adjuvant, and this was expressed in tobacco chloroplasts. Transplastomic tobacco lines were generated using biolistic transformation, and these were confirmed to carry the synthetic gene construct. Expression of the synthetic GK1 peptide was confirmed using RT-PCR and Western blots. Furthermore, the GK1 peptide was detected by HPLC at levels of up to 6 µg g−1 dry weight of tobacco leaf tissue. The plant-derived Malchloroplast candidate vaccine was subsequently tested in BALB/c female mice following subcutaneous administration, and was found to elicit specific humoral responses. Furthermore, components of this candidate vaccine were recognized by antibodies in Plasmodium falciparum malaria patients and were immunogenic in test mice. Thus, this study provided a ‘proof of concept’ for a promising plant-based candidate subunit vaccine against malaria.
KW - Humoral response
KW - Molecular farming
KW - Plasmodium falciparum
KW - Plastid transformation
KW - Polycistronic
KW - Transplastomics
KW - Vaccine adjuvant
UR - http://www.scopus.com/inward/record.url?scp=85090115252&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85090115252&partnerID=8YFLogxK
U2 - 10.1007/s12033-020-00271-x
DO - 10.1007/s12033-020-00271-x
M3 - Article
C2 - 32870446
AN - SCOPUS:85090115252
SN - 1073-6085
VL - 62
SP - 534
EP - 545
JO - Molecular Biotechnology
JF - Molecular Biotechnology
IS - 10
ER -