An agent-based metapopulation model simulating virus-based biocontrol of Heterodera glycines

Safyre Anderson, Chinmay Soman, Sadia Bekal, Leslie Domier, Kris Lambert, Kaustubh Bhalerao

Research output: Contribution to journalArticle

Abstract

With recently discovered soybean cyst nematode (SCN) viruses, biological control of the nematodes is a theoretical possibility. This study explores the question of what kinds of viruses would make useful biocontrol agents, taking into account evolutionary and population dynamics. An agent-based model, Soybean Cyst Nematode Simulation (SCNSim), was developed to simulate within-host virulence evolution in a virus-nematode-soybean ecosystem. SCNSim was used to predict nematode suppression under a range of viral mutation rates, initial virulences, and release strategies. The simulation model suggested that virus-based biocontrol worked best when the nematodes were inundated with the viruses. Under lower infection prevalence, the viral burden thinned out rapidly due to the limited mobility and high reproductive rate of the SCN. In accordance with the generally accepted trade-off theory, SCNSim predicted the optimal initial virulence for the maximum nematode suppression. Higher initial virulence resulted in shorter lifetime transmission, whereas viruses with lower initial virulence values evolved toward avirulence. SCNSim also indicated that a greater viral mutation rate reinforced the virulence pathotype, suggesting the presence of a virulence threshold necessary to achieve biocontrol against SCN.

Original languageEnglish (US)
Pages (from-to)79-90
Number of pages12
JournalJournal of Nematology
Volume50
Issue number2
DOIs
StatePublished - Jan 1 2018

Keywords

  • Biological control
  • Heterodera glycines
  • Host-parasitic relationship
  • Numerical model
  • Soybean cyst nematode
  • Virulence evolution

ASJC Scopus subject areas

  • Agronomy and Crop Science

Fingerprint Dive into the research topics of 'An agent-based metapopulation model simulating virus-based biocontrol of Heterodera glycines'. Together they form a unique fingerprint.

  • Cite this