Amino acids in SRS1 and SRS6 are critical for furanocoumarin metabolism by CYP6B1v1, a cytochrome P450 monooxygenase

Research output: Contribution to journalArticle

Abstract

CYP6B1v1 is the principal cytochrome P450 monooxygenase (P450) that detoxifies dietary furanocoumarins in the guts of Papilio polyxenes, the black swallowtail caterpillar. Sequence alignments and structure comparisons of CYP6B1v1 with the mouse CYP2A5 and bacterial CYP102 proteins, which are also capable of metabolizing the linear furanocoumarin xanthotoxin (8-methoxypsoralen), suggested that Phe116, His117, Val368 and Phe484 might be active site residues. In a homology model developed for CYP6B1v1, the side chains of Phe116 and His117 located in the B′-C loop of SRS1 are predicted to be positioned above the haem plane, while the side chain of Phe484 located in SRS6 is predicted near the entrance of the catalytic pocket. Site-directed mutagenesis of residues Phe116, His117 and Phe484 indicated that these residues represent several of those that determine this protein's stability and substrate specificity. Whereas all aromatic mutants of Phe116 and Phe484 generated CO-difference spectra with maxima at 450 nm indicative of correctly configured monooxygenases, aromatic mutants of Phe116 exhibited reduced reactivities toward some furanocoumarins and aromatic mutants of Phe484 eliminated all reactivities toward furanocoumarins. All single and double aliphatic mutants of Phe116, His117 and Phe484 and aromatic mutants of His117 generated carbon monoxide (CO) difference spectra with maxima at 420 nm (P420) indicative of incorrectly configured monooxygenases. These studies define residues Phe116, His117 and Phe484 as determinants of this insect P450's catalytic site integrity and residues Phe116 and Phe484 as determinants of its substrate specificity. Conservation of Phe116 and His117 in an array of lepidopteran CYP6B proteins implies that these amino acids serve a similar function in other monooxygenases of the insect CYP6B subfamily.

Original languageEnglish (US)
Pages (from-to)175-186
Number of pages12
JournalInsect Molecular Biology
Volume11
Issue number2
DOIs
StatePublished - May 6 2002

Fingerprint

psoralens
Mixed Function Oxygenases
cytochrome P-450
Metabolism
Cytochrome P-450 Enzyme System
aromatic compounds
Methoxsalen
Amino Acids
Papilio polyxenes
mutants
amino acids
metabolism
methoxsalen
Carbon Monoxide
Substrate Specificity
carbon monoxide
Insects
Catalytic Domain
substrate specificity
active sites

Keywords

  • Cytochrome P450 monooxygenases
  • Furanocoumarin metabolism
  • Homology modelling
  • Insect P450s

ASJC Scopus subject areas

  • Molecular Biology
  • Genetics
  • Insect Science

Cite this

@article{926fbcc14ce3457dbccb89928986effe,
title = "Amino acids in SRS1 and SRS6 are critical for furanocoumarin metabolism by CYP6B1v1, a cytochrome P450 monooxygenase",
abstract = "CYP6B1v1 is the principal cytochrome P450 monooxygenase (P450) that detoxifies dietary furanocoumarins in the guts of Papilio polyxenes, the black swallowtail caterpillar. Sequence alignments and structure comparisons of CYP6B1v1 with the mouse CYP2A5 and bacterial CYP102 proteins, which are also capable of metabolizing the linear furanocoumarin xanthotoxin (8-methoxypsoralen), suggested that Phe116, His117, Val368 and Phe484 might be active site residues. In a homology model developed for CYP6B1v1, the side chains of Phe116 and His117 located in the B′-C loop of SRS1 are predicted to be positioned above the haem plane, while the side chain of Phe484 located in SRS6 is predicted near the entrance of the catalytic pocket. Site-directed mutagenesis of residues Phe116, His117 and Phe484 indicated that these residues represent several of those that determine this protein's stability and substrate specificity. Whereas all aromatic mutants of Phe116 and Phe484 generated CO-difference spectra with maxima at 450 nm indicative of correctly configured monooxygenases, aromatic mutants of Phe116 exhibited reduced reactivities toward some furanocoumarins and aromatic mutants of Phe484 eliminated all reactivities toward furanocoumarins. All single and double aliphatic mutants of Phe116, His117 and Phe484 and aromatic mutants of His117 generated carbon monoxide (CO) difference spectra with maxima at 420 nm (P420) indicative of incorrectly configured monooxygenases. These studies define residues Phe116, His117 and Phe484 as determinants of this insect P450's catalytic site integrity and residues Phe116 and Phe484 as determinants of its substrate specificity. Conservation of Phe116 and His117 in an array of lepidopteran CYP6B proteins implies that these amino acids serve a similar function in other monooxygenases of the insect CYP6B subfamily.",
keywords = "Cytochrome P450 monooxygenases, Furanocoumarin metabolism, Homology modelling, Insect P450s",
author = "Chen, {J. S.} and Berenbaum, {May R} and Schuler, {Mary A}",
year = "2002",
month = "5",
day = "6",
doi = "10.1046/j.1365-2583.2002.00323.x",
language = "English (US)",
volume = "11",
pages = "175--186",
journal = "Insect Molecular Biology",
issn = "0962-1075",
publisher = "Wiley-Blackwell",
number = "2",

}

TY - JOUR

T1 - Amino acids in SRS1 and SRS6 are critical for furanocoumarin metabolism by CYP6B1v1, a cytochrome P450 monooxygenase

AU - Chen, J. S.

AU - Berenbaum, May R

AU - Schuler, Mary A

PY - 2002/5/6

Y1 - 2002/5/6

N2 - CYP6B1v1 is the principal cytochrome P450 monooxygenase (P450) that detoxifies dietary furanocoumarins in the guts of Papilio polyxenes, the black swallowtail caterpillar. Sequence alignments and structure comparisons of CYP6B1v1 with the mouse CYP2A5 and bacterial CYP102 proteins, which are also capable of metabolizing the linear furanocoumarin xanthotoxin (8-methoxypsoralen), suggested that Phe116, His117, Val368 and Phe484 might be active site residues. In a homology model developed for CYP6B1v1, the side chains of Phe116 and His117 located in the B′-C loop of SRS1 are predicted to be positioned above the haem plane, while the side chain of Phe484 located in SRS6 is predicted near the entrance of the catalytic pocket. Site-directed mutagenesis of residues Phe116, His117 and Phe484 indicated that these residues represent several of those that determine this protein's stability and substrate specificity. Whereas all aromatic mutants of Phe116 and Phe484 generated CO-difference spectra with maxima at 450 nm indicative of correctly configured monooxygenases, aromatic mutants of Phe116 exhibited reduced reactivities toward some furanocoumarins and aromatic mutants of Phe484 eliminated all reactivities toward furanocoumarins. All single and double aliphatic mutants of Phe116, His117 and Phe484 and aromatic mutants of His117 generated carbon monoxide (CO) difference spectra with maxima at 420 nm (P420) indicative of incorrectly configured monooxygenases. These studies define residues Phe116, His117 and Phe484 as determinants of this insect P450's catalytic site integrity and residues Phe116 and Phe484 as determinants of its substrate specificity. Conservation of Phe116 and His117 in an array of lepidopteran CYP6B proteins implies that these amino acids serve a similar function in other monooxygenases of the insect CYP6B subfamily.

AB - CYP6B1v1 is the principal cytochrome P450 monooxygenase (P450) that detoxifies dietary furanocoumarins in the guts of Papilio polyxenes, the black swallowtail caterpillar. Sequence alignments and structure comparisons of CYP6B1v1 with the mouse CYP2A5 and bacterial CYP102 proteins, which are also capable of metabolizing the linear furanocoumarin xanthotoxin (8-methoxypsoralen), suggested that Phe116, His117, Val368 and Phe484 might be active site residues. In a homology model developed for CYP6B1v1, the side chains of Phe116 and His117 located in the B′-C loop of SRS1 are predicted to be positioned above the haem plane, while the side chain of Phe484 located in SRS6 is predicted near the entrance of the catalytic pocket. Site-directed mutagenesis of residues Phe116, His117 and Phe484 indicated that these residues represent several of those that determine this protein's stability and substrate specificity. Whereas all aromatic mutants of Phe116 and Phe484 generated CO-difference spectra with maxima at 450 nm indicative of correctly configured monooxygenases, aromatic mutants of Phe116 exhibited reduced reactivities toward some furanocoumarins and aromatic mutants of Phe484 eliminated all reactivities toward furanocoumarins. All single and double aliphatic mutants of Phe116, His117 and Phe484 and aromatic mutants of His117 generated carbon monoxide (CO) difference spectra with maxima at 420 nm (P420) indicative of incorrectly configured monooxygenases. These studies define residues Phe116, His117 and Phe484 as determinants of this insect P450's catalytic site integrity and residues Phe116 and Phe484 as determinants of its substrate specificity. Conservation of Phe116 and His117 in an array of lepidopteran CYP6B proteins implies that these amino acids serve a similar function in other monooxygenases of the insect CYP6B subfamily.

KW - Cytochrome P450 monooxygenases

KW - Furanocoumarin metabolism

KW - Homology modelling

KW - Insect P450s

UR - http://www.scopus.com/inward/record.url?scp=0036010998&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0036010998&partnerID=8YFLogxK

U2 - 10.1046/j.1365-2583.2002.00323.x

DO - 10.1046/j.1365-2583.2002.00323.x

M3 - Article

C2 - 11966883

AN - SCOPUS:0036010998

VL - 11

SP - 175

EP - 186

JO - Insect Molecular Biology

JF - Insect Molecular Biology

SN - 0962-1075

IS - 2

ER -