Abstract
Metal-binding proteins have the exceptional ability to facilitate long-range electron transport in nature. Despite recent progress, the sequence-structure-function relationships governing electron transport in heme-binding peptides and protein assemblies are not yet fully understood. In this work, the electronic properties of a series of heme-binding peptides inspired by cytochrome bc1 are studied using a combination of molecular electronics experiments, molecular modeling, and simulation. Self-assembled monolayers (SAMs) are prepared using sequence-defined heme-binding peptides capable of forming helical secondary structures. Following monolayer formation, the structural properties and chemical composition of assembled peptides are determined using atomic force microscopy and X-ray photoelectron spectroscopy, and the electronic properties (current density-voltage response) are characterized using a soft contact liquid metal electrode method based on eutectic gallium-indium alloys (EGaIn). Our results show a substantial 1000-fold increase in current density across SAM junctions upon addition of heme compared to identical peptide sequences in the absence of heme, while maintaining a constant junction thickness. These findings show that amino acid composition and sequence directly control enhancements in electron transport in heme-binding peptides. Overall, this study demonstrates the potential of using sequence-defined synthetic peptides inspired by nature as functional bioelectronic materials.
Original language | English (US) |
---|---|
Pages (from-to) | 612-621 |
Number of pages | 10 |
Journal | ACS Central Science |
Volume | 11 |
Issue number | 4 |
Early online date | Apr 2 2025 |
DOIs | |
State | Published - Apr 23 2025 |
ASJC Scopus subject areas
- General Chemistry
- General Chemical Engineering