Amine-reactive forms of a luminescent diethylenetriaminepentaacetic acid chelate of terbium and europium: attachment to DNA and energy transfer measurements

Research output: Contribution to journalArticlepeer-review

Abstract

An isothiocyanate form of a lanthanide chelate which is highly luminescent when bound to terbium or europium has been synthesized. The chelate consists of diethylenetriaminepentaacetic acid (DTPA) covalently joined to a chromophore, 7-amino-4-methyl-2(1H)-quinolinone (cs124), and to L-p-aminophenylalanine, in which the aromatic amine was further converted to an isothiocyanate group. Ethylenediamine was also used in place of aminophenylalanine, but the isothiocyanate formed from the aliphatic amine was significantly less reactive. Site-specific attachments to triglycine and to the 5' ends of amine-modified DNA oligomers have been made. In addition, as an alternative method of coupling to macromolecules, DTPA anhydride-cs124 can be used to react specifically with a 5' amine group on base-deprotected synthetic DNA oligomers. Synthesis and purification is relatively straightforward in both cases, and luminescent properties are favorable for several applications, including as nonisotopic labels, as long-lifetime alternatives to fluorophores in imaging and diagnostics and particularly as donors in luminescence resonance energy transfer. Energy transfer measurements are consistent with previously reported measurements using different attachment mechanisms.

Original languageEnglish (US)
Pages (from-to)127-132
Number of pages6
JournalBioconjugate Chemistry
Volume8
Issue number2
DOIs
StatePublished - Mar 1997
Externally publishedYes

ASJC Scopus subject areas

  • Biotechnology
  • Bioengineering
  • Biomedical Engineering
  • Pharmacology
  • Pharmaceutical Science
  • Organic Chemistry

Fingerprint Dive into the research topics of 'Amine-reactive forms of a luminescent diethylenetriaminepentaacetic acid chelate of terbium and europium: attachment to DNA and energy transfer measurements'. Together they form a unique fingerprint.

Cite this