Alloy: Parallel-serial memory channel architecture for single-chip heterogeneous processor systems

Hao Wang, Chang Jae Park, Gyung Su Byun, Jung Ho Ahn, Nam Sung Kim

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

A single-chip heterogeneous processor integrates both CPU and GPU on the same chip, demanding higher memory bandwidth. However, the current parallel interface (e.g., DDR3) can increase neither the number of (memory) channels nor the bit rate of the channels without paying high package and power costs. In contrast, the high-speed serial interface (HSI) can offer much higher bandwidth for the same number of pins and lower power consumption for the same bandwidth than the parallel interface. This allows us to integrate more channels under a pin and/or package power constraint but at the cost of longer latency for memory accesses and higher static energy consumption in particular for idle channels. In this paper, we first provide a deep understanding of recent HSI exhibiting very distinct characteristics from past serial interfaces in terms of bit rate, latency, energy per bit transfer, and static power consumption. To overcome the limitation of using only parallel or serial interfaces, we second propose a hybrid memory channel architecture-Alloy consisting of low-latency parallel and high-bandwidth serial channels. Alloy is assisted by our two proposed techniques: (i), a memory channel partitioning technique adoptively maps physical (memory) pages of latency-sensitive (CPU) and bandwidth-consuming (GPU) applications to parallel and serial channels, respectively, and (ii) a power management technique reduces the static energy consumption of idle serial channels. On average, Alloy provides 21% and 32% higher performance for CPU and GPU, respectively, while consuming total memory interface energy comparable to the baseline parallel channel architecture for diverse mixes of co-running CPU and GPU applications.

Original languageEnglish (US)
Title of host publication2015 IEEE 21st International Symposium on High Performance Computer Architecture, HPCA 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages296-308
Number of pages13
ISBN (Electronic)9781479989300
DOIs
StatePublished - Mar 6 2015
Externally publishedYes
Event2015 21st IEEE International Symposium on High Performance Computer Architecture, HPCA 2015 - Burlingame, United States
Duration: Feb 7 2015Feb 11 2015

Publication series

Name2015 IEEE 21st International Symposium on High Performance Computer Architecture, HPCA 2015

Other

Other2015 21st IEEE International Symposium on High Performance Computer Architecture, HPCA 2015
Country/TerritoryUnited States
CityBurlingame
Period2/7/152/11/15

Keywords

  • Heterogeneous processors
  • Memory architecture
  • Serial memory interface

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Hardware and Architecture
  • Software

Fingerprint

Dive into the research topics of 'Alloy: Parallel-serial memory channel architecture for single-chip heterogeneous processor systems'. Together they form a unique fingerprint.

Cite this