Aligning Product Chemistry and Soil Context for Agronomic Reuse of Human-Derived Resources

Research output: Contribution to journalArticle

Abstract

Recovering human-derived nutrients from sanitation systems can offset inorganic fertilizer use and improve access to agricultural nutrients in resource-limited settings, but the agronomic value of recovered products depends upon product chemistry and soil context. Products may exacerbate already-compromised soil conditions, offer benefits beyond nutrients, or have reduced efficacy depending on soil characteristics. Using global spatial modeling, we evaluate the soil suitability of seven products (wastewater, sludge, compost, urine, ammonium sulfate, ammonium struvite, potassium struvite) and integrate this information with local recovery potential of each product from sanitation systems that will need to be installed to achieve universal coverage (referred to here as "newly-installed sanitation"). If product recovery and reuse are colocated, the quantity and suitability of nutrient reuse was variable across countries. For example, alkaline products (e.g., struvite) may be particularly beneficial when applied to acidic soils in Uganda but potentially detrimental in the southwestern United States. Further, we illustrate discrepancies across soil data sets and highlight the need for locally accurate data, knowledge, and interpretation. Overall, this study demonstrates soil context is critical to comprehensively characterize the value proposition of nutrient recovery, and it provides a foundation for incorporating soil suitability into local and global sanitation decision-making.

Original languageEnglish (US)
Pages (from-to)6501-6510
Number of pages10
JournalEnvironmental Science and Technology
Volume53
Issue number11
DOIs
StatePublished - Jun 4 2019

    Fingerprint

ASJC Scopus subject areas

  • Chemistry(all)
  • Environmental Chemistry

Cite this