Aligning 3D models to RGB-D images of cluttered scenes

Saurabh Gupta, Pablo Arbeláez, Ross Girshick, Jitendra Malik

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The goal of this work is to represent objects in an RGB-D scene with corresponding 3D models from a library. We approach this problem by first detecting and segmenting object instances in the scene and then using a convolutional neural network (CNN) to predict the pose of the object. This CNN is trained using pixel surface normals in images containing renderings of synthetic objects. When tested on real data, our method outperforms alternative algorithms trained on real data. We then use this coarse pose estimate along with the inferred pixel support to align a small number of prototypical models to the data, and place into the scene the model that fits best. We observe a 48% relative improvement in performance at the task of 3D detection over the current state-of-the-art [34], while being an order of magnitude faster.

Original languageEnglish (US)
Title of host publicationIEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015
PublisherIEEE Computer Society
Pages4731-4740
Number of pages10
ISBN (Electronic)9781467369640
DOIs
StatePublished - Oct 14 2015
Externally publishedYes
EventIEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015 - Boston, United States
Duration: Jun 7 2015Jun 12 2015

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume07-12-June-2015
ISSN (Print)1063-6919

Other

OtherIEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015
Country/TerritoryUnited States
CityBoston
Period6/7/156/12/15

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Aligning 3D models to RGB-D images of cluttered scenes'. Together they form a unique fingerprint.

Cite this