Aligned Image-Word Representations Improve Inductive Transfer Across Vision-Language Tasks

Tanmay Gupta, Kevin Shih, Saurabh Singh, Derek Hoiem

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

An important goal of computer vision is to build systems that learn visual representations over time that can be applied to many tasks. In this paper, we investigate a vision-language embedding as a core representation and show that it leads to better cross-task transfer than standard multitask learning. In particular, the task of visual recognition is aligned to the task of visual question answering by forcing each to use the same word-region embeddings. We show this leads to greater inductive transfer from recognition to VQA than standard multitask learning. Visual recognition also improves, especially for categories that have relatively few recognition training labels but appear often in the VQA setting. Thus, our paper takes a small step towards creating more general vision systems by showing the benefit of interpretable, flexible, and trainable core representations.

Original languageEnglish (US)
Title of host publicationProceedings - 2017 IEEE International Conference on Computer Vision, ICCV 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4223-4232
Number of pages10
ISBN (Electronic)9781538610329
DOIs
StatePublished - Dec 22 2017
Event16th IEEE International Conference on Computer Vision, ICCV 2017 - Venice, Italy
Duration: Oct 22 2017Oct 29 2017

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
Volume2017-October
ISSN (Print)1550-5499

Other

Other16th IEEE International Conference on Computer Vision, ICCV 2017
Country/TerritoryItaly
CityVenice
Period10/22/1710/29/17

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Aligned Image-Word Representations Improve Inductive Transfer Across Vision-Language Tasks'. Together they form a unique fingerprint.

Cite this