Abstract
Multimodal word discovery (MWD) is often treated as a byproduct of the speech-to-image retrieval problem. However, our theoretical analysis shows that some kind of alignment/attention mechanism is crucial for a MWD system to learn meaningful word-level representation. We verify our theory by conducting retrieval and word discovery experiments on MSCOCO and Flickr8k, and empirically demonstrate that both neural MT with self-attention and statistical MT achieve word discovery scores that are superior to those of a state-of-the-art neural retrieval system, outperforming it by 2% and 5% alignment F1 scores respectively.
Original language | English (US) |
---|---|
Pages (from-to) | 7603-7607 |
Number of pages | 5 |
Journal | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
Volume | 2021-June |
DOIs | |
State | Published - 2021 |
Event | 2021 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2021 - Virtual, Toronto, Canada Duration: Jun 6 2021 → Jun 11 2021 |
Keywords
- Language acquisition
- Low-resource speech technology
- Multimodal learning
- Spoken term discovery
ASJC Scopus subject areas
- Software
- Signal Processing
- Electrical and Electronic Engineering