Algorithms with logarithmic or sublinear regret for constrained contextual bandits

Huasen Wu, R. Srikant, Xin Liu, Chong Jiang

Research output: Contribution to journalConference articlepeer-review

Abstract

We study contextual bandits with budget and time constraints, referred to as constrained contextual bandits. The time and budget constraints significantly complicate the exploration and exploitation tradeoff because they introduce complex coupling among contexts over time. To gain insight, we first study unit-cost systems with known context distribution. When the expected rewards are known, we develop an approximation of the oracle, referred to Adaptive-Linear-Programming (ALP), which achieves near-optimality and only requires the ordering of expected rewards. With these highly desirable features, we then combine ALP with the upper-confidence-bound (UCB) method in the general case where the expected rewards are unknown a priori. We show that the proposed UCB-ALP algorithm achieves logarithmic regret except for certain boundary cases. Further, we design algorithms and obtain similar regret bounds for more general systems with unknown context distribution and heterogeneous costs. To the best of our knowledge, this is the first work that shows how to achieve logarithmic regret in constrained contextual bandits. Moreover, this work also sheds light on the study of computationally efficient algorithms for general constrained contextual bandits.

Original languageEnglish (US)
Pages (from-to)433-441
Number of pages9
JournalAdvances in Neural Information Processing Systems
Volume2015-January
StatePublished - 2015
Event29th Annual Conference on Neural Information Processing Systems, NIPS 2015 - Montreal, Canada
Duration: Dec 7 2015Dec 12 2015

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Algorithms with logarithmic or sublinear regret for constrained contextual bandits'. Together they form a unique fingerprint.

Cite this