Alexa Conversations: An Extensible Data-driven Approach for Building Task-oriented Dialogue Systems

Anish Acharya, Suranjit Adhikari, Sanchit Agarwal, Vincent Auvray, Nehal Belgamwar, Arijit Biswas, Shubhra Chandra, Tagyoung Chung, Maryam Fazel-Zarandi, Raefer Gabriel, Shuyang Gao, Rahul Goel, Dilek Hakkani-Tur, Jan Jezabek, Abhay Jha, Jiun Yu Kao, Prakash Krishnan, Peter Ku, Anuj Goyal, Chien Wei LinQing Liu, Arindam Mandal, Angeliki Metallinou, Vishal Naik, Yi Pan, Shachi Paul, Vittorio Perera, Abhishek Sethi, Minmin Shen, Nikko Strom, Eddie Wang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Traditional goal-oriented dialogue systems rely on various components such as natural language understanding, dialogue state tracking, policy learning and response generation. Training each component requires annotations which are hard to obtain for every new domain, limiting scalability of such systems. Similarly, rule-based dialogue systems require extensive writing and maintenance of rules and do not scale either. End-to-End dialogue systems, on the other hand, do not require module-specific annotations but need a large amount of data for training. To overcome these problems, in this demo, we present Alexa Conversations, a new approach for building goal-oriented dialogue systems that is scalable, extensible as well as data efficient. The components of this system are trained in a data-driven manner, but instead of collecting annotated conversations for training, we generate them using a novel dialogue simulator based on a few seed dialogues and specifications of APIs and entities provided by the developer. Our approach provides out-of-the-box support for natural conversational phenomena like entity sharing across turns or users changing their mind during conversation without requiring developers to provide any such dialogue flows. We exemplify our approach using a simple pizza ordering task and showcase its value in reducing the developer burden for creating a robust experience. Finally, we evaluate our system using a typical movie ticket booking task and show that the dialogue simulator is an essential component of the system that leads to over 50% improvement in turn-level action signature prediction accuracy.

Original languageEnglish (US)
Title of host publicationNAACL-HLT 2021 - 2021 Conference of the North American Chapter of the Association for Computational Linguistics
Subtitle of host publicationHuman Language Technologies, Demonstrations
PublisherAssociation for Computational Linguistics (ACL)
Pages125-132
Number of pages8
ISBN (Electronic)9781954085480
StatePublished - 2021
Externally publishedYes
Event2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021 - Virtual, Online
Duration: Jun 6 2021Jun 11 2021

Publication series

NameNAACL-HLT 2021 - 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Demonstrations

Conference

Conference2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021
CityVirtual, Online
Period6/6/216/11/21

ASJC Scopus subject areas

  • Information Systems
  • Software
  • Computer Networks and Communications
  • Hardware and Architecture

Fingerprint

Dive into the research topics of 'Alexa Conversations: An Extensible Data-driven Approach for Building Task-oriented Dialogue Systems'. Together they form a unique fingerprint.

Cite this