TY - GEN
T1 - ALASTOR
T2 - 31st USENIX Security Symposium, Security 2022
AU - Datta, Pubali
AU - Polinsky, Isaac
AU - Inam, Muhammad Adil
AU - Bates, Adam
AU - Enck, William
N1 - This work was supported in part by NSF CNS 17-50024, NSF CNS 19-55228 and NSF CNS 20-55127. The views expressed are those of the authors only.
PY - 2022
Y1 - 2022
N2 - Serverless computing has freed developers from the burden of managing their own platform and infrastructure, allowing them to rapidly prototype and deploy applications. Despite its surging popularity, however, serverless raises a number of concerning security implications. Among them is the difficulty of investigating intrusions - by decomposing traditional applications into ephemeral re-entrant functions, serverless has enabled attackers to conceal their activities within legitimate workflows, and even prevent root cause analysis by abusing warm container reuse policies to break causal paths. Unfortunately, neither traditional approaches to system auditing nor commercial serverless security products provide the transparency needed to accurately track these novel threats. In this work, we propose ALASTOR, a provenance-based auditing framework that enables precise tracing of suspicious events in serverless applications. ALASTOR records function activity at both system and application layers to capture a holistic picture of each function instances' behavior. It then aggregates provenance from different functions at a central repository within the serverless platform, stitching it together to produce a global data provenance graph of complex function workflows. ALASTOR is both function and language-agnostic, and can easily be integrated into existing serverless platforms with minimal modification. We implement ALASTOR for the OpenFaaS platform and evaluate its performance using the well-established Nordstrom Hello,Retail! application, discovering in the process that ALASTOR imposes manageable overheads (13.74%), in exchange for significantly improved forensic capabilities as compared to commercially-available monitoring tools. To our knowledge, ALASTOR is the first auditing framework specifically designed to satisfy the operational requirements of serverless platforms.
AB - Serverless computing has freed developers from the burden of managing their own platform and infrastructure, allowing them to rapidly prototype and deploy applications. Despite its surging popularity, however, serverless raises a number of concerning security implications. Among them is the difficulty of investigating intrusions - by decomposing traditional applications into ephemeral re-entrant functions, serverless has enabled attackers to conceal their activities within legitimate workflows, and even prevent root cause analysis by abusing warm container reuse policies to break causal paths. Unfortunately, neither traditional approaches to system auditing nor commercial serverless security products provide the transparency needed to accurately track these novel threats. In this work, we propose ALASTOR, a provenance-based auditing framework that enables precise tracing of suspicious events in serverless applications. ALASTOR records function activity at both system and application layers to capture a holistic picture of each function instances' behavior. It then aggregates provenance from different functions at a central repository within the serverless platform, stitching it together to produce a global data provenance graph of complex function workflows. ALASTOR is both function and language-agnostic, and can easily be integrated into existing serverless platforms with minimal modification. We implement ALASTOR for the OpenFaaS platform and evaluate its performance using the well-established Nordstrom Hello,Retail! application, discovering in the process that ALASTOR imposes manageable overheads (13.74%), in exchange for significantly improved forensic capabilities as compared to commercially-available monitoring tools. To our knowledge, ALASTOR is the first auditing framework specifically designed to satisfy the operational requirements of serverless platforms.
UR - http://www.scopus.com/inward/record.url?scp=85137244448&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85137244448&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85137244448
T3 - Proceedings of the 31st USENIX Security Symposium, Security 2022
SP - 2443
EP - 2460
BT - Proceedings of the 31st USENIX Security Symposium, Security 2022
PB - USENIX Association
Y2 - 10 August 2022 through 12 August 2022
ER -