TY - JOUR
T1 - Akt Serine/Threonine Kinase 1 Regulates de Novo Fatty Acid Synthesis through the Mammalian Target of Rapamycin/Sterol Regulatory Element Binding Protein 1 Axis in Dairy Goat Mammary Epithelial Cells
AU - Zhang, Tianying
AU - Huang, Jiangtao
AU - Yi, Yongqing
AU - Zhang, Xueying
AU - Loor, Juan J.
AU - Cao, Yanhong
AU - Shi, Huaiping
AU - Luo, Jun
N1 - *E-mail: [email protected]. *E-mail: [email protected]. ORCID Huaiping Shi: 0000-0003-0476-7615 Funding This research was jointly supported by the National Natural Science Foundation of China (31672398), the Transgenic New Species Breeding Program of China (2014ZX08009-051B), and the Science Foundation of Shaanxi Province of China (2016KTZDNY02-05). Notes The authors declare no competing financial interest.
This research was jointly supported by the National Natural Science Foundation of China (31672398), the Transgenic New Species Breeding Program of China (2014ZX08009-051B), and the Science Foundation of Shaanxi Province of China (2016KTZDNY02-05).
PY - 2018/2/7
Y1 - 2018/2/7
N2 - Akt serine/threonine kinase acts as a central mediator in the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway, regulating a series of biological processes. In lipid metabolism, Akt activation regulates a series of gene expressions, including genes related to intracellular fatty acid synthesis. However, the regulatory mechanisms of Akt in dairy goat mammary lipid metabolism have not been elaborated. In this study, the coding sequences of goat Akt1 gene were cloned and analyzed. Gene expression of Akt1 in different lactation stages was also investigated. For in vitro studies, a eukaryotic expression vector of Akt1 was constructed and transfected to goat mammary epithelial cells (GMECs), and specific inhibitors of Akt/mammalian target of rapamycin (mTOR) signaling were applied to GMECs. Results showed that Akt1 protein was highly conserved, and its mRNA was highly expressed in midlactation. In vitro studies indicated that Akt1 phosphorylation activated mTOR and subsequently enhanced sterol regulatory element binding protein 1 (SREBP1), thus increasing intracellular triacylglycerol content. Inhibition of Akt/mTOR signaling down-regulated the gene expression of lipogenic genes. Overall, Akt1 plays an important role in regulating de novo fatty acid synthesis in goat mammary epithelial cells, and this process probably is through the mTOR/SREBP1 axis.
AB - Akt serine/threonine kinase acts as a central mediator in the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway, regulating a series of biological processes. In lipid metabolism, Akt activation regulates a series of gene expressions, including genes related to intracellular fatty acid synthesis. However, the regulatory mechanisms of Akt in dairy goat mammary lipid metabolism have not been elaborated. In this study, the coding sequences of goat Akt1 gene were cloned and analyzed. Gene expression of Akt1 in different lactation stages was also investigated. For in vitro studies, a eukaryotic expression vector of Akt1 was constructed and transfected to goat mammary epithelial cells (GMECs), and specific inhibitors of Akt/mammalian target of rapamycin (mTOR) signaling were applied to GMECs. Results showed that Akt1 protein was highly conserved, and its mRNA was highly expressed in midlactation. In vitro studies indicated that Akt1 phosphorylation activated mTOR and subsequently enhanced sterol regulatory element binding protein 1 (SREBP1), thus increasing intracellular triacylglycerol content. Inhibition of Akt/mTOR signaling down-regulated the gene expression of lipogenic genes. Overall, Akt1 plays an important role in regulating de novo fatty acid synthesis in goat mammary epithelial cells, and this process probably is through the mTOR/SREBP1 axis.
KW - Akt1
KW - goat
KW - lipid
KW - mammary
UR - http://www.scopus.com/inward/record.url?scp=85041948037&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85041948037&partnerID=8YFLogxK
U2 - 10.1021/acs.jafc.7b05305
DO - 10.1021/acs.jafc.7b05305
M3 - Article
C2 - 29323924
AN - SCOPUS:85041948037
SN - 0021-8561
VL - 66
SP - 1197
EP - 1205
JO - Journal of Agricultural and Food Chemistry
JF - Journal of Agricultural and Food Chemistry
IS - 5
ER -