TY - JOUR
T1 - Aircraft Electrothermal Pulse Deicing
AU - Khodakarami, Siavash
AU - Agarwal, Vaibhav
AU - Kabirzadeh, Pouya
AU - Solecki, Alexandra
AU - Hoque, Muhammad Jahidul
AU - Yang, Wentao
AU - Stokowski, Nicole
AU - Jacobs, Joshua
AU - Chatterji, Arindam
AU - Lovelace, Edward
AU - Stillwell, Andrew
AU - Miljkovic, Nenad
N1 - The authors gratefully acknowledge funding support from the ARPA-E under Award No. DE-AR0001594. N.M. gratefully acknowledges funding support from the International Institute for Carbon Neutral Energy Research (WPI-I2CNER), sponsored by the Japanese Ministry of Education, Culture, Sports, Science and Technology. Funding Data ARPA-E (Award No. DE-AR0001594; Funder ID: 10.13039/100009224).
PY - 2025/1/1
Y1 - 2025/1/1
N2 - Ice formation and accumulation on aircraft is a major problem in aviation. Icing is directly responsible for aircraft incidents, limiting the safety of air travel and requiring expensive, and sometimes ineffective deicing strategies. Furthermore, electrification of aircraft platforms leads to difficulties with integration of legacy deicing methods such as pneumatic boots. In this work, we study electrothermal pulse deicing capable of efficient and rapid removal of ice from aircraft wings. The pulse approach enables the efficient melting of a thin (<100 μm) ice layer on the wing surface to limit parasitic heat losses. Only the interface is melted, with the rest of the ice sliding on the melt lubrication layer due to aerodynamic forces. To study pulse deicing, we developed a transient thermal-hydrodynamic numerical model that accounts for multiple phases and materials, specific and latent heating effects, melt layer hydrodynamics, as well as boundary layer effects. To identify optimal deicing strategies, we use our model to study the effects of heater thickness (50 μm < th < 1 mm), substrate electrical insulation thickness (10 μm < ti < 1 mm), pulse duration (0.4 s < Δtpulse < 4.5 s), and pulse energy. Optimum operating points are identified for large (Boeing-747), midsize (Embraer-E175), and small (Cessna-172) aircraft. The scale-dependent thermal-hydraulic model results are used to estimate input conditions required for deicing and integrated into an electrical model considering energy storage, power electronics, integration, and layout, to achieve overall volumetric and gravimetric power density optimization.
AB - Ice formation and accumulation on aircraft is a major problem in aviation. Icing is directly responsible for aircraft incidents, limiting the safety of air travel and requiring expensive, and sometimes ineffective deicing strategies. Furthermore, electrification of aircraft platforms leads to difficulties with integration of legacy deicing methods such as pneumatic boots. In this work, we study electrothermal pulse deicing capable of efficient and rapid removal of ice from aircraft wings. The pulse approach enables the efficient melting of a thin (<100 μm) ice layer on the wing surface to limit parasitic heat losses. Only the interface is melted, with the rest of the ice sliding on the melt lubrication layer due to aerodynamic forces. To study pulse deicing, we developed a transient thermal-hydrodynamic numerical model that accounts for multiple phases and materials, specific and latent heating effects, melt layer hydrodynamics, as well as boundary layer effects. To identify optimal deicing strategies, we use our model to study the effects of heater thickness (50 μm < th < 1 mm), substrate electrical insulation thickness (10 μm < ti < 1 mm), pulse duration (0.4 s < Δtpulse < 4.5 s), and pulse energy. Optimum operating points are identified for large (Boeing-747), midsize (Embraer-E175), and small (Cessna-172) aircraft. The scale-dependent thermal-hydraulic model results are used to estimate input conditions required for deicing and integrated into an electrical model considering energy storage, power electronics, integration, and layout, to achieve overall volumetric and gravimetric power density optimization.
KW - decarbonization
KW - electric aviation
KW - electrothermal
KW - ice
KW - leading edge
KW - wing
UR - http://www.scopus.com/inward/record.url?scp=105001170235&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=105001170235&partnerID=8YFLogxK
U2 - 10.1115/1.4066396
DO - 10.1115/1.4066396
M3 - Article
AN - SCOPUS:105001170235
SN - 2832-8450
VL - 147
JO - ASME Journal of Heat and Mass Transfer
JF - ASME Journal of Heat and Mass Transfer
IS - 1
M1 - 012401
ER -