AI-Driven Multiscale Simulations Illuminate Mechanisms of SARS-CoV-2 Spike Dynamics

Lorenzo Casalino, Abigail Dommer, Zied Gaieb, Emilia P. Barros, Terra Sztain, Surl-Hee Ahn, Anda Trifan, Alexander Brace, Anthony Bogetti, Heng Ma, Hyungro Lee, Matteo Turilli, Syma Khalid, Lillian Chong, Carlos Simmerling, David J. Hardy, Julio D. C. Maia, James C. Phillips, Thorsten Kurth, Abraham SternLei Huang, John McCalpin, Mahidhar Tatineni, Tom Gibbs, John E. Stone, Shantenu Jha, Arvind Ramanathan, Rommie E. Amaro

Research output: Working paper

Abstract

We develop a generalizable AI-driven workflow that leverages heterogeneous HPC resources to explore the time-dependent dynamics of molecular systems. We use this workflow to investigate the mechanisms of infectivity of the SARS-CoV-2 spike protein, the main viral infection machinery. Our workflow enables more efficient investigation of spike dynamics in a variety of complex environments, including within a complete SARS-CoV-2 viral envelope simulation, which contains 305 million atoms and shows strong scaling on ORNL Summit using NAMD. We present several novel scientific discoveries, including the elucidation of the spike’s full glycan shield, the role of spike glycans in modulating the infectivity of the virus, and the characterization of the flexible interactions between the spike and the human ACE2 receptor. We also demonstrate how AI can accelerate conformational sampling across different systems and pave the way for the future application of such methods to additional studies in SARS-CoV-2 and other molecular systems.ACM Reference Format Lorenzo Casalino1textdagger, Abigail Dommer1textdagger, Zied Gaieb1textdagger, Emilia P. Barros1, Terra Sztain1, Surl-Hee Ahn1, Anda Trifan2,3, Alexander Brace2, Anthony Bogetti4, Heng Ma2, Hyungro Lee5, Matteo Turilli5, Syma Khalid6, Lillian Chong4, Carlos Simmerling7, David J. Hardy3, Julio D. C. Maia3, James C. Phillips3, Thorsten Kurth8, Abraham Stern8, Lei Huang9, John McCalpin9, Mahidhar Tatineni10, Tom Gibbs8, John E. Stone3, Shantenu Jha5, Arvind Ramanathan2*, Rommie E. Amaro1*. 2020. AI-Driven Multiscale Simulations Illuminate Mechanisms of SARS-CoV-2 Spike Dynamics. In Supercomputing ’20: International Conference for High Performance Computing, Networking, Storage, and Analysis. ACM, New York, NY, USA, 14 pages. https://doi.org/finalDOICompeting Interest StatementThe authors have declared no competing interest.
Original languageEnglish (US)
PublisherCold Spring Harbor Laboratory Press
Number of pages14
DOIs
StateIn preparation - Nov 20 2020

Publication series

NamebioRxiv
PublisherCold Spring Harbor Laboratory Press

Keywords

  • Coronavirus
  • COVID-19
  • severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
  • Novel coronavirus
  • 2019-nCoV
  • Pandemic
  • molecular dynamics
  • AI
  • GPU
  • HPC
  • computational virology
  • weighted ensemble
  • multiscale simulation
  • deep learning

Fingerprint Dive into the research topics of 'AI-Driven Multiscale Simulations Illuminate Mechanisms of SARS-CoV-2 Spike Dynamics'. Together they form a unique fingerprint.

Cite this