AhR and SHP regulate phosphatidylcholine and S-adenosylmethionine levels in the one-carbon cycle

Young Chae Kim, Sunmi Seok, Sangwon Byun, Bo Kong, Yang Zhang, Grace Guo, Wen Xie, Jian Ma, Byron Kemper, Jongsook Kim Kemper

Research output: Contribution to journalArticlepeer-review

Abstract

Phosphatidylcholines (PC) and S-adenosylmethionine (SAM) are critical determinants of hepatic lipid levels, but how their levels are regulated is unclear. Here, we show that Pemt and Gnmt, key one-carbon cycle genes regulating PC/SAM levels, are downregulated after feeding, leading to decreased PC and increased SAM levels, but these effects are blunted in small heterodimer partner (SHP)-null or FGF15-null mice. Further, aryl hydrocarbon receptor (AhR) is translocated into the nucleus by insulin/PKB signaling in the early fed state and induces Pemt and Gnmt expression. This induction is blocked by FGF15 signaling-activated SHP in the late fed state. Adenoviral-mediated expression of AhR in obese mice increases PC levels and exacerbates steatosis, effects that are blunted by SHP co-expression or Pemt downregulation. PEMT, AHR, and PC levels are elevated in simple steatosis patients, but PC levels are robustly reduced in steatohepatitis-fibrosis patients. This study identifies AhR and SHP as new physiological regulators of PC/SAM levels.

Original languageEnglish (US)
Article number540
JournalNature communications
Volume9
Issue number1
DOIs
StatePublished - Dec 1 2018

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'AhR and SHP regulate phosphatidylcholine and S-adenosylmethionine levels in the one-carbon cycle'. Together they form a unique fingerprint.

Cite this