TY - JOUR
T1 - Aging Population, Balanced Diet and China’s Grain Demand
AU - Liu, Xiuli
AU - Ho, Mun S.
AU - Hewings, Geoffrey J. D.
AU - Dou, Yuxing
AU - Wang, Shouyang
AU - Wang, Guangzhou
AU - Guan, Dabo
AU - Li, Shantong
N1 - Funding Information:
This research was funded by the National Social Science Fund of China for Special Projects on ‘Nutrient-Oriented Grain Demand Forecasting and Strategies for Improving Grain Security’, grant number E31Z060101 to X.L.; and 2023 U.S.-China American Studies Fellowship (ASF) from the U.S. Embassy in Beijing, grant number ASF2301000 to X.L. The APC was funded by grant number E31Z060101.
Funding Information:
This work was supported by the National Social Science Fund of China for Special Projects on ‘Nutrient-Oriented Grain Demand Forecasting and Strategies for Improving Grain Security’ and the 2023 U.S.-China American Studies Fellowship (ASF) from the U.S. Embassy in Beijing to X.L. M.S.H. is supported by the Harvard Global Institute. The authors thank Chris Nielsen and Michael McElroy at Harvard John A. Paulson of Engineering and Applied Sciences, Harvard University for their valuable suggestions on this research. The statements made and views expressed are solely the responsibility of the authors.
Publisher Copyright:
© 2023 by the authors.
PY - 2023/7
Y1 - 2023/7
N2 - The need to make more accurate grain demand (GD) forecasting has become a major topic in the current international grain security discussion. Our research aims to improve short-term GD prediction by establishing a multi-factor model that integrates the key factors: shifts in dietary structures, population size and age structure, urbanization, food waste, and the impact of COVID-19. These factors were not considered simultaneously in previous research. To illustrate the model, we projected China’s annual GDP from 2022 to 2025. We calibrated key parameters such as conversion coefficients from animal foods to feed grain, standard person consumption ratios, and population size using the latest surveys and statistical data that were either out of date or missing in previous research. Results indicate that if the change in diets continued at the rate as observed during 2013–2019 (scenario 1), China’s GD is projected to be 629.35 million tons in 2022 and 658.16 million tons in 2025. However, if diets shift to align with the recommendations in the Dietary Guideline for Chinese Residents 2022 (scenario 2), GD would be lower by 5.9–11.1% annually compared to scenario 1. A reduction in feed grain accounts for 68% of this change. Furthermore, for every 1 percentage point increase in the population adopting a balanced diet, GD would fall by 0.44–0.73 million tons annually during that period. Overlooking changes in the population age structure could lead to an overprediction of annual GDP by 3.8% from 2022 to 2025. With an aging population, China’s GD would fall slightly, and adopting a balanced diet would not lead to an increase in GD but would have positive impacts on human health and the environment. Our sensitivity analysis indicated that reducing food waste, particularly cereal, livestock, and poultry waste, would have significant effects on reducing GD, offsetting the higher demand due to rising urbanization and higher incomes. These results underscore the significance of simultaneous consideration of multiple factors, particularly the dietary structure and demographic composition, resulting in a more accurate prediction of GD. Our findings should be useful for policymakers concerning grain security, health, and environmental protection.
AB - The need to make more accurate grain demand (GD) forecasting has become a major topic in the current international grain security discussion. Our research aims to improve short-term GD prediction by establishing a multi-factor model that integrates the key factors: shifts in dietary structures, population size and age structure, urbanization, food waste, and the impact of COVID-19. These factors were not considered simultaneously in previous research. To illustrate the model, we projected China’s annual GDP from 2022 to 2025. We calibrated key parameters such as conversion coefficients from animal foods to feed grain, standard person consumption ratios, and population size using the latest surveys and statistical data that were either out of date or missing in previous research. Results indicate that if the change in diets continued at the rate as observed during 2013–2019 (scenario 1), China’s GD is projected to be 629.35 million tons in 2022 and 658.16 million tons in 2025. However, if diets shift to align with the recommendations in the Dietary Guideline for Chinese Residents 2022 (scenario 2), GD would be lower by 5.9–11.1% annually compared to scenario 1. A reduction in feed grain accounts for 68% of this change. Furthermore, for every 1 percentage point increase in the population adopting a balanced diet, GD would fall by 0.44–0.73 million tons annually during that period. Overlooking changes in the population age structure could lead to an overprediction of annual GDP by 3.8% from 2022 to 2025. With an aging population, China’s GD would fall slightly, and adopting a balanced diet would not lead to an increase in GD but would have positive impacts on human health and the environment. Our sensitivity analysis indicated that reducing food waste, particularly cereal, livestock, and poultry waste, would have significant effects on reducing GD, offsetting the higher demand due to rising urbanization and higher incomes. These results underscore the significance of simultaneous consideration of multiple factors, particularly the dietary structure and demographic composition, resulting in a more accurate prediction of GD. Our findings should be useful for policymakers concerning grain security, health, and environmental protection.
KW - grain demand
KW - COVID-19
KW - food waste
KW - urbanization
KW - aging population
KW - dietary structure
UR - http://www.scopus.com/inward/record.url?scp=85164730254&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85164730254&partnerID=8YFLogxK
U2 - 10.3390/nu15132877
DO - 10.3390/nu15132877
M3 - Article
C2 - 37447204
SN - 2072-6643
VL - 15
JO - Nutrients
JF - Nutrients
IS - 13
M1 - 2877
ER -