Abstract
Purpose. To examine head impact incidence and head acceleration during experimentally induced falls as a function of age. Methods. 15 young adults (21.2±2.7) and 10 older adults (61.9±4.3 years) underwent 6 experimentally induced sideways falls. Participants fell sideways onto a 20cm crash pad. The number of head impacts was tabulated from video recordings and head acceleration was calculated from motion capture data. A total of 147 falls were analyzed. Results. The young group underwent 88 falls, in which 11.4% resulted in head impact. The older group underwent 59 falls, in which 34.5% resulted in head impact. A proportion analysis revealed older adults had a significantly greater proportion of head impacts than young adults (X2(1) = 11.445, p = 0.001). A two-way ANOVA only revealed a main effect of head impact on acceleration (F(1,142) = 54.342, p<0.001). Conclusion. The older adults experienced a greater proportion of head impacts during sideways falls. Head impact resulted in greater head acceleration compared to no head impact. Collectively, this data highlights the possibility that age-related neuromuscular changes to head control may result in elevated risk of fall-related TBIs. Future research examining mechanisms underlying increases in fall-related head impact is warranted.
Original language | English (US) |
---|---|
Article number | 6804614 |
Journal | BioMed Research International |
Volume | 2019 |
DOIs | |
State | Published - 2019 |
ASJC Scopus subject areas
- Biochemistry, Genetics and Molecular Biology(all)
- Immunology and Microbiology(all)