After DART: Using the First Full-scale Test of a Kinetic Impactor to Inform a Future Planetary Defense Mission

Thomas S. Statler, Sabina D. Raducan, Olivier S. Barnouin, Mallory E. DeCoster, Steven R. Chesley, Brent Barbee, Harrison F. Agrusa, Saverio Cambioni, Andrew F. Cheng, Elisabetta Dotto, Siegfried Eggl, Eugene G. Fahnestock, Fabio Ferrari, Dawn Graninger, Alain Herique, Isabel Herreros, Masatoshi Hirabayashi, Stavro Ivanovski, Martin Jutzi, Özgür KaratekinAlice Lucchetti, Robert Luther, Rahil Makadia, Francesco Marzari, Patrick Michel, Naomi Murdoch, Ryota Nakano, Jens Ormö, Maurizio Pajola, Andrew S. Rivkin, Alessandro Rossi, Paul Sánchez, Stephen R. Schwartz, Stefania Soldini, Damya Souami, Angela Stickle, Paolo Tortora, Josep M. Trigo-Rodríguez, Flaviane Venditti, Jean Baptiste Vincent, Kai Wünnemann

Research output: Contribution to journalArticlepeer-review

Abstract

NASA’s Double Asteroid Redirection Test (DART) is the first full-scale test of an asteroid deflection technology. Results from the hypervelocity kinetic impact and Earth-based observations, coupled with LICIACube and the later Hera mission, will result in measurement of the momentum transfer efficiency accurate to ∼10% and characterization of the Didymos binary system. But DART is a single experiment; how could these results be used in a future planetary defense necessity involving a different asteroid? We examine what aspects of Dimorphos’s response to kinetic impact will be constrained by DART results; how these constraints will help refine knowledge of the physical properties of asteroidal materials and predictive power of impact simulations; what information about a potential Earth impactor could be acquired before a deflection effort; and how design of a deflection mission should be informed by this understanding. We generalize the momentum enhancement factor β, showing that a particular direction-specific β will be directly determined by the DART results, and that a related direction-specific β is a figure of merit for a kinetic impact mission. The DART β determination constrains the ejecta momentum vector, which, with hydrodynamic simulations, constrains the physical properties of Dimorphos’s near-surface. In a hypothetical planetary defense exigency, extrapolating these constraints to a newly discovered asteroid will require Earth-based observations and benefit from in situ reconnaissance. We show representative predictions for momentum transfer based on different levels of reconnaissance and discuss strategic targeting to optimize the deflection and reduce the risk of a counterproductive deflection in the wrong direction.

Original languageEnglish (US)
Article number244
JournalPlanetary Science Journal
Volume3
Issue number10
DOIs
StatePublished - Oct 1 2022
Externally publishedYes

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Geophysics
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'After DART: Using the First Full-scale Test of a Kinetic Impactor to Inform a Future Planetary Defense Mission'. Together they form a unique fingerprint.

Cite this