Adversarial Complementary Learning for Weakly Supervised Object Localization

Xiaolin Zhang, Yunchao Wei, Jiashi Feng, Yi Yang, Thomas Huang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this work, we propose Adversarial Complementary Learning (ACoL) to automatically localize integral objects of semantic interest with weak supervision. We first mathematically prove that class localization maps can be obtained by directly selecting the class-specific feature maps of the last convolutional layer, which paves a simple way to identify object regions. We then present a simple network architecture including two parallel-classifiers for object localization. Specifically, we leverage one classification branch to dynamically localize some discriminative object regions during the forward pass. Although it is usually responsive to sparse parts of the target objects, this classifier can drive the counterpart classifier to discover new and complementary object regions by erasing its discovered regions from the feature maps. With such an adversarial learning, the two parallel-classifiers are forced to leverage complementary object regions for classification and can finally generate integral object localization together. The merits of ACoL are mainly two-fold: 1) it can be trained in an end-to-end manner; 2) dynamically erasing enables the counterpart classifier to discover complementary object regions more effectively. We demonstrate the superiority of our ACoL approach in a variety of experiments. In particular, the Top-1 localization error rate on the ILSVRC dataset is 45.14%, which is the new state-of-the-art.

Original languageEnglish (US)
Title of host publicationProceedings - 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
PublisherIEEE Computer Society
Pages1325-1334
Number of pages10
ISBN (Electronic)9781538664209
DOIs
StatePublished - Dec 14 2018
Event31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018 - Salt Lake City, United States
Duration: Jun 18 2018Jun 22 2018

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Conference

Conference31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
Country/TerritoryUnited States
CitySalt Lake City
Period6/18/186/22/18

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Adversarial Complementary Learning for Weakly Supervised Object Localization'. Together they form a unique fingerprint.

Cite this