TY - JOUR
T1 - Adsorption mechanisms of inositol hexakisphosphate in the presence of phosphate at the amorphous aluminum oxyhydroxide-water interface
AU - Xu, Suwei
AU - Arai, Yuji
N1 - Publisher Copyright:
© 2022 Elsevier B.V.
PY - 2022/9/1
Y1 - 2022/9/1
N2 - Myo-inositol hexakisphosphate (myo-IHP) is one of the most common soil organic phosphorus (P) species in soil. Its retention in soil is often competed by phosphate, making bioavailability of P species difficult. In this study, the adsorption mechanism of myo-IHP at the amorphous aluminum (oxyhydr)oxide (AAH)-water interface was investigated at pH 6.5 in the presence of phosphate using batch adsorption experiments and solution 31P NMR spectroscopy. The ratio of [myo-IHP]i/[phosphate]i (Ri) was kept 0.33–3 while ligand addition was varied. In the absence of phosphate, myo-IHP forms inner-sphere surface complexes in AAH via P1,3, P2, P4,6, and P5 functional group coordination. When two ligands were simultaneously added, fewer P functional groups of myo-IHP coordinated to AAH and the surface complexes were altered with the coordination of mainly P1,3 and P2 functional groups. When phosphate was pre-adsorbed, myo-IHP adsorption decreased by 8.0–44% compared to the respective simultaneous addition system. P2 or P5 functional group was predominantly coordinated to the AAH surfaces at Ri = 0.33. Myo-IHP pre-adsorption resulted in an increase in the final myo-IHP adsorption compared to that in the simultaneous addition system under the respective Ri values (0.33–3). In this system, P1,3, P2, P4,6, and P5 functional groups were coordinated to form inner-sphere surface complexes regardless of Ri. The study revealed that the functional group specific adsorption mechanism of myo-IHP at the AAH-water interface was affected by addition sequence and Ri of two ligands. The competitive adsorption between organic P and phosphate plays an important role in the fate of P in soils.
AB - Myo-inositol hexakisphosphate (myo-IHP) is one of the most common soil organic phosphorus (P) species in soil. Its retention in soil is often competed by phosphate, making bioavailability of P species difficult. In this study, the adsorption mechanism of myo-IHP at the amorphous aluminum (oxyhydr)oxide (AAH)-water interface was investigated at pH 6.5 in the presence of phosphate using batch adsorption experiments and solution 31P NMR spectroscopy. The ratio of [myo-IHP]i/[phosphate]i (Ri) was kept 0.33–3 while ligand addition was varied. In the absence of phosphate, myo-IHP forms inner-sphere surface complexes in AAH via P1,3, P2, P4,6, and P5 functional group coordination. When two ligands were simultaneously added, fewer P functional groups of myo-IHP coordinated to AAH and the surface complexes were altered with the coordination of mainly P1,3 and P2 functional groups. When phosphate was pre-adsorbed, myo-IHP adsorption decreased by 8.0–44% compared to the respective simultaneous addition system. P2 or P5 functional group was predominantly coordinated to the AAH surfaces at Ri = 0.33. Myo-IHP pre-adsorption resulted in an increase in the final myo-IHP adsorption compared to that in the simultaneous addition system under the respective Ri values (0.33–3). In this system, P1,3, P2, P4,6, and P5 functional groups were coordinated to form inner-sphere surface complexes regardless of Ri. The study revealed that the functional group specific adsorption mechanism of myo-IHP at the AAH-water interface was affected by addition sequence and Ri of two ligands. The competitive adsorption between organic P and phosphate plays an important role in the fate of P in soils.
KW - Addition sequence
KW - Adsorption
KW - IHP
KW - Molar ratio
KW - Phosphate
KW - Phytic acid
KW - Solution NMR
UR - http://www.scopus.com/inward/record.url?scp=85129987379&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85129987379&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2022.155525
DO - 10.1016/j.scitotenv.2022.155525
M3 - Article
C2 - 35489486
AN - SCOPUS:85129987379
SN - 0048-9697
VL - 837
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 155525
ER -