Adhesion and friction properties of polymer brushes on rough surfaces: A gradient approach

Shivaprakash N. Ramakrishna, Rosa M. Espinosa-Marzal, Vikrant V. Naik, Prathima C. Nalam, Nicholas D. Spencer

Research output: Contribution to journalArticlepeer-review


The effect of nanoscale surface roughness on the lubrication properties of a polymer brush in a good solvent has been investigated. Friction and adhesion forces were measured by means of polyethylene colloidal-probe AFM across a 12 nm silica particle gradient before and after the adsorption of a poly(l-lysine)-g-poly(ethylene glycol) (PLL-g-PEG) polymer brush. The adsorption and conformation of the polymer chains were studied with multiple transmission and reflection infrared (MTR-IR) spectroscopy. The results show that prior to the adsorption of PLL-g-PEG on the gradient surface, the friction is high at the smooth end of the gradient while it decreases toward the rough end. Moreover, there is a direct correlation between friction and adhesion. Upon adsorption of the brushes, adhesion vanishes. In this case, a higher frictional force between the PEG-coated particle gradient substrate and the polyethylene sphere is observed at the rough end of the gradient in comparison to the smooth end. In spite of the increased adsorbed mass of PLL-g-PEG at the rough end of the gradient, theory and simulations show that the high curvature of the nanoparticles leads to a less swollen PEG brush in comparison to PEG brushes adsorbed on a planar surface, resulting in a lower repulsion, which can explain the observed increase in friction with particle density.

Original languageEnglish (US)
Pages (from-to)15251-15259
Number of pages9
Issue number49
StatePublished - Dec 10 2013
Externally publishedYes

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Spectroscopy
  • Electrochemistry


Dive into the research topics of 'Adhesion and friction properties of polymer brushes on rough surfaces: A gradient approach'. Together they form a unique fingerprint.

Cite this