Additional Comparison of Iced Aerodynamic Measurements on a Swept Wing from Two Wind Tunnels

Sam Lee, Andy Broeren, Brian Woodard, Christopher Lum, Timothy Smith

Research output: Contribution to journalConference articlepeer-review

Abstract

Artificial ice shapes of various geometric fidelity were tested on a wing model based on the Common Research Model. Low Reynolds number tests were conducted at Wichita State University's Walter H. Beech Memorial Wind Tunnel utilizing an 8.9% scale model, and high Reynolds number tests were conducted at ONERA's F1 wind tunnel utilizing a 13.3% scale model. Several identical geometrically-scaled ice shapes were tested at both facilities, and the results were compared at overlapping Reynolds and Mach numbers. This was to ensure that the results and trends observed at low Reynolds number could be applied and continued to high, near-flight Reynolds number. The data from Wichita State University and ONERA F1 agreed well at matched Reynolds and Mach numbers. The lift and pitching moment curves agreed very well for most configurations. This confirmed results from previous tests with other ice shapes that indicated the data from the low Reynolds number tests could be used to understand iced-swept-wing aerodynamics at high Reynolds number. This allows ice aerodynamics testing to be performed at low Reynolds number facilities with much lower operating costs and generate results that are applicable to flight Reynolds number.

Original languageEnglish (US)
JournalSAE Technical Papers
Volume2019-June
Issue numberJune
DOIs
StatePublished - Jun 10 2019
Event2019 SAE International Conference on Icing of Aircraft, Engines, and Structures, ICE 2019 - Minneapolis, United States
Duration: Jun 17 2019Jun 21 2019

ASJC Scopus subject areas

  • Automotive Engineering
  • Safety, Risk, Reliability and Quality
  • Pollution
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Additional Comparison of Iced Aerodynamic Measurements on a Swept Wing from Two Wind Tunnels'. Together they form a unique fingerprint.

Cite this