TY - JOUR
T1 - Adaptive evolution of hepcidin genes in antarctic notothenioid fishes
AU - Xu, Qianghua
AU - Cheng, Chi Hing Christina
AU - Hu, Peng
AU - Ye, Hua
AU - Chen, Zuozhou
AU - Cao, Lixue
AU - Chen, Lei
AU - Shen, Yu
AU - Chen, Liangbiao
PY - 2008/6
Y1 - 2008/6
N2 - Hepcidin is a small bioactive peptide with dual roles as an antimicrobial peptide and as the principal hormonal regulator of iron homeostasis in human and mouse. Hepcidin homologs of very similar structures are found in lower vertebrates, all comprise ∼20-25 amino acids with 8 highly conserved cysteines forming 4 intramolecular disulfide bonds, giving hepcidin a hairpin structure. Hepcidins are particularly diverse in teleost fishes, which may be related to the diversity of aquatic environments with varying degree of pathogen challenge, oxygenation, and iron concentration, factors known to alter hepcidin expression in mammals. We characterized the diversity of hepcidin genes of the Antarctic notothenioid fishes that are endemic to the world's coldest and most oxygen-rich marine water. Notothenioid fishes have at least 4 hepcidin variants, in 2 distinctive structural types. Type I hepcidins comprise 3 distinct variants that are homologs of the widespread 8-cysteine hepcidins. Type II is a novel 4-cysteine variant and therefore only 2 possible disulfide bonds, highly expressed in hematopoietic tissues. Analyses of dN/dS substitution rate ratios and likelihood ratio test under site-specific models detected significant signal of positive Darwinian selection on the mature hepcidin-coding sequence, suggesting adaptive evolution of notothenioid hepcidins. Genomic polymerase chain reaction and Southern hybridization showed that the novel type II hepcidin occurs exclusively in lineages of the Antarctic notothenioid radiation but not in the basal non-Antarctic taxa, and lineage-specific positive selection was detected on the branch leading to the type II hepcidin clade under branch-site models, suggesting adaptive evolution of the reduced cysteine variant in response to the polar environment. We also isolated a structurally distinct 4-cysteine (4cys) hepcidin from an Antarctic eelpout that is unrelated to the notothenioids but inhabits the same freezing water. Neighbor-Joining (NJ) analyses of teleost hepcidins showed that the eelpout 4cys variant arose independently from the notothenioid version, which lends support to adaptive evolution of reduced cysteine hepcidin variants on cold selection. The NJ tree also showed taxonomic-specific expansions of hepcidin variants, indicating that duplication and diversification of hepcidin genes play important roles in evolutionary response to diverse ecological conditions.
AB - Hepcidin is a small bioactive peptide with dual roles as an antimicrobial peptide and as the principal hormonal regulator of iron homeostasis in human and mouse. Hepcidin homologs of very similar structures are found in lower vertebrates, all comprise ∼20-25 amino acids with 8 highly conserved cysteines forming 4 intramolecular disulfide bonds, giving hepcidin a hairpin structure. Hepcidins are particularly diverse in teleost fishes, which may be related to the diversity of aquatic environments with varying degree of pathogen challenge, oxygenation, and iron concentration, factors known to alter hepcidin expression in mammals. We characterized the diversity of hepcidin genes of the Antarctic notothenioid fishes that are endemic to the world's coldest and most oxygen-rich marine water. Notothenioid fishes have at least 4 hepcidin variants, in 2 distinctive structural types. Type I hepcidins comprise 3 distinct variants that are homologs of the widespread 8-cysteine hepcidins. Type II is a novel 4-cysteine variant and therefore only 2 possible disulfide bonds, highly expressed in hematopoietic tissues. Analyses of dN/dS substitution rate ratios and likelihood ratio test under site-specific models detected significant signal of positive Darwinian selection on the mature hepcidin-coding sequence, suggesting adaptive evolution of notothenioid hepcidins. Genomic polymerase chain reaction and Southern hybridization showed that the novel type II hepcidin occurs exclusively in lineages of the Antarctic notothenioid radiation but not in the basal non-Antarctic taxa, and lineage-specific positive selection was detected on the branch leading to the type II hepcidin clade under branch-site models, suggesting adaptive evolution of the reduced cysteine variant in response to the polar environment. We also isolated a structurally distinct 4-cysteine (4cys) hepcidin from an Antarctic eelpout that is unrelated to the notothenioids but inhabits the same freezing water. Neighbor-Joining (NJ) analyses of teleost hepcidins showed that the eelpout 4cys variant arose independently from the notothenioid version, which lends support to adaptive evolution of reduced cysteine hepcidin variants on cold selection. The NJ tree also showed taxonomic-specific expansions of hepcidin variants, indicating that duplication and diversification of hepcidin genes play important roles in evolutionary response to diverse ecological conditions.
KW - Cold adaptation
KW - Gene duplication
KW - Hepcidin
KW - Iron regulation
KW - Positive selection
UR - http://www.scopus.com/inward/record.url?scp=44649155133&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=44649155133&partnerID=8YFLogxK
U2 - 10.1093/molbev/msn056
DO - 10.1093/molbev/msn056
M3 - Article
C2 - 18310660
AN - SCOPUS:44649155133
SN - 0737-4038
VL - 25
SP - 1099
EP - 1112
JO - Molecular Biology and Evolution
JF - Molecular Biology and Evolution
IS - 6
ER -