Activity of glucose oxidase functionalized onto magnetic nanoparticles

Gilles K. Kouassi, Joseph Irudayaraj, Gregory McCarty

Research output: Contribution to journalArticlepeer-review

Abstract

Background: Magnetic nanoparticles have been significantly used for coupling with biomolecules, due to their unique properties. Methods: Magnetic nanoparticles were synthesized by thermal co-precipitation of ferric and ferrous chloride using two different base solutions. Glucose oxidase was bound to the particles by direct attachment via carbodiimide activation or by thiophene acetylation of magnetic nanoparticles. Transmission electron microscopy was used to characterize the size and structure of the particles while the binding of glucose oxidase to the particles was confirmed using Fourier transform infrared spectroscopy. Results: The direct binding of glucose oxidase via carbodiimide activity was found to be more effective, resulting in bound enzyme efficiencies between 94-100% while thiophene acetylation was 66-72% efficient. Kinetic and stability studies showed that the enzyme activity was more preserved upon binding onto the nanoparticles when subjected to thermal and various pH conditions. The overall activity of glucose oxidase was improved when bound to magnetic nanoparticles. Conclusion: Binding of enzyme onto magnetic nanoparticles via carbodiimide activation is a very efficient method for developing bioconjugates for biological applications.

Original languageEnglish (US)
JournalBioMagnetic Research and Technology
Volume3
DOIs
StatePublished - Mar 11 2005
Externally publishedYes

ASJC Scopus subject areas

  • Biophysics

Fingerprint

Dive into the research topics of 'Activity of glucose oxidase functionalized onto magnetic nanoparticles'. Together they form a unique fingerprint.

Cite this