Active radiative liquid lithium divertor concept

M. Ono, M. A. Jaworski, R. Kaita, Y. Hirooka, D. Andruczyk, T. K. Gray

Research output: Contribution to journalArticle

Abstract

Developing a reactor compatible divertor has been identified as a particularly challenging technology problem for magnetic confinement fusion. Application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and reduction in the divertor peak heat flux while maintaining essentially Li-free core plasma operation even during H-modes. These promising Li results in NSTX and related modeling calculations motivated the radiative liquid lithium divertor (RLLD) concept [1]. In the RLLD, Li is evaporated from the liquid lithium (LL) coated divertor strike point surface due to the intense heat flux. The evaporated Li is readily ionized by the plasma due to its low ionization energy, and the poor Li particle confinement near the divertor plate enables ionized Li ions to radiate strongly, resulting in a significant reduction in the divertor heat flux. This radiative process has the desired effect of spreading the localized divertor heat load to the rest of the divertor chamber wall surfaces, facilitating divertor heat removal. The modeling results indicated that the Li radiation can be quite strong, so that only a small amount of Li (∼a few mol/s) is needed to significantly reduce the divertor peak heat flux for typical reactor parameters. In this paper, we examine an active version of the RLLD, which we term ARLLD, where LL is injected in the upstream region of divertor. We find that the ARLLD has similar effectiveness in reducing the divertor heat flux as the RLLD, again requiring only a few mol/s of LL to significantly reduce the divertor peak heat flux for a reactor. An advantage of the ARLLD is that one can inject LL proactively even in a feedback mode to insure the divertor peak heat flux remains below an acceptable level, providing the first line of defense against excessive divertor heat loads which could result in damage to divertor PFCs. Moreover, the low confinement property of the divertor (i.e.; <1 ms for Li particle confinement time) makes the ARLLD response fast enough to mitigate the effects of possible transient events such as large ELMs.

Original languageEnglish (US)
Pages (from-to)2838-2844
Number of pages7
JournalFusion Engineering and Design
Volume89
Issue number12
DOIs
StatePublished - Dec 1 2014

Fingerprint

Lithium
Liquids
Heat flux
Thermal load
Plasmas
Ionization potential

Keywords

  • Divertor
  • International lithium symposium
  • Lithium
  • Plasma-wall interactions

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Nuclear Energy and Engineering
  • Materials Science(all)
  • Mechanical Engineering

Cite this

Ono, M., Jaworski, M. A., Kaita, R., Hirooka, Y., Andruczyk, D., & Gray, T. K. (2014). Active radiative liquid lithium divertor concept. Fusion Engineering and Design, 89(12), 2838-2844. https://doi.org/10.1016/j.fusengdes.2014.05.008

Active radiative liquid lithium divertor concept. / Ono, M.; Jaworski, M. A.; Kaita, R.; Hirooka, Y.; Andruczyk, D.; Gray, T. K.

In: Fusion Engineering and Design, Vol. 89, No. 12, 01.12.2014, p. 2838-2844.

Research output: Contribution to journalArticle

Ono, M, Jaworski, MA, Kaita, R, Hirooka, Y, Andruczyk, D & Gray, TK 2014, 'Active radiative liquid lithium divertor concept', Fusion Engineering and Design, vol. 89, no. 12, pp. 2838-2844. https://doi.org/10.1016/j.fusengdes.2014.05.008
Ono, M. ; Jaworski, M. A. ; Kaita, R. ; Hirooka, Y. ; Andruczyk, D. ; Gray, T. K. / Active radiative liquid lithium divertor concept. In: Fusion Engineering and Design. 2014 ; Vol. 89, No. 12. pp. 2838-2844.
@article{a71037442c5144a99f7203eb8be4ea3f,
title = "Active radiative liquid lithium divertor concept",
abstract = "Developing a reactor compatible divertor has been identified as a particularly challenging technology problem for magnetic confinement fusion. Application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and reduction in the divertor peak heat flux while maintaining essentially Li-free core plasma operation even during H-modes. These promising Li results in NSTX and related modeling calculations motivated the radiative liquid lithium divertor (RLLD) concept [1]. In the RLLD, Li is evaporated from the liquid lithium (LL) coated divertor strike point surface due to the intense heat flux. The evaporated Li is readily ionized by the plasma due to its low ionization energy, and the poor Li particle confinement near the divertor plate enables ionized Li ions to radiate strongly, resulting in a significant reduction in the divertor heat flux. This radiative process has the desired effect of spreading the localized divertor heat load to the rest of the divertor chamber wall surfaces, facilitating divertor heat removal. The modeling results indicated that the Li radiation can be quite strong, so that only a small amount of Li (∼a few mol/s) is needed to significantly reduce the divertor peak heat flux for typical reactor parameters. In this paper, we examine an active version of the RLLD, which we term ARLLD, where LL is injected in the upstream region of divertor. We find that the ARLLD has similar effectiveness in reducing the divertor heat flux as the RLLD, again requiring only a few mol/s of LL to significantly reduce the divertor peak heat flux for a reactor. An advantage of the ARLLD is that one can inject LL proactively even in a feedback mode to insure the divertor peak heat flux remains below an acceptable level, providing the first line of defense against excessive divertor heat loads which could result in damage to divertor PFCs. Moreover, the low confinement property of the divertor (i.e.; <1 ms for Li particle confinement time) makes the ARLLD response fast enough to mitigate the effects of possible transient events such as large ELMs.",
keywords = "Divertor, International lithium symposium, Lithium, Plasma-wall interactions",
author = "M. Ono and Jaworski, {M. A.} and R. Kaita and Y. Hirooka and D. Andruczyk and Gray, {T. K.}",
year = "2014",
month = "12",
day = "1",
doi = "10.1016/j.fusengdes.2014.05.008",
language = "English (US)",
volume = "89",
pages = "2838--2844",
journal = "Fusion Engineering and Design",
issn = "0920-3796",
publisher = "Elsevier BV",
number = "12",

}

TY - JOUR

T1 - Active radiative liquid lithium divertor concept

AU - Ono, M.

AU - Jaworski, M. A.

AU - Kaita, R.

AU - Hirooka, Y.

AU - Andruczyk, D.

AU - Gray, T. K.

PY - 2014/12/1

Y1 - 2014/12/1

N2 - Developing a reactor compatible divertor has been identified as a particularly challenging technology problem for magnetic confinement fusion. Application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and reduction in the divertor peak heat flux while maintaining essentially Li-free core plasma operation even during H-modes. These promising Li results in NSTX and related modeling calculations motivated the radiative liquid lithium divertor (RLLD) concept [1]. In the RLLD, Li is evaporated from the liquid lithium (LL) coated divertor strike point surface due to the intense heat flux. The evaporated Li is readily ionized by the plasma due to its low ionization energy, and the poor Li particle confinement near the divertor plate enables ionized Li ions to radiate strongly, resulting in a significant reduction in the divertor heat flux. This radiative process has the desired effect of spreading the localized divertor heat load to the rest of the divertor chamber wall surfaces, facilitating divertor heat removal. The modeling results indicated that the Li radiation can be quite strong, so that only a small amount of Li (∼a few mol/s) is needed to significantly reduce the divertor peak heat flux for typical reactor parameters. In this paper, we examine an active version of the RLLD, which we term ARLLD, where LL is injected in the upstream region of divertor. We find that the ARLLD has similar effectiveness in reducing the divertor heat flux as the RLLD, again requiring only a few mol/s of LL to significantly reduce the divertor peak heat flux for a reactor. An advantage of the ARLLD is that one can inject LL proactively even in a feedback mode to insure the divertor peak heat flux remains below an acceptable level, providing the first line of defense against excessive divertor heat loads which could result in damage to divertor PFCs. Moreover, the low confinement property of the divertor (i.e.; <1 ms for Li particle confinement time) makes the ARLLD response fast enough to mitigate the effects of possible transient events such as large ELMs.

AB - Developing a reactor compatible divertor has been identified as a particularly challenging technology problem for magnetic confinement fusion. Application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and reduction in the divertor peak heat flux while maintaining essentially Li-free core plasma operation even during H-modes. These promising Li results in NSTX and related modeling calculations motivated the radiative liquid lithium divertor (RLLD) concept [1]. In the RLLD, Li is evaporated from the liquid lithium (LL) coated divertor strike point surface due to the intense heat flux. The evaporated Li is readily ionized by the plasma due to its low ionization energy, and the poor Li particle confinement near the divertor plate enables ionized Li ions to radiate strongly, resulting in a significant reduction in the divertor heat flux. This radiative process has the desired effect of spreading the localized divertor heat load to the rest of the divertor chamber wall surfaces, facilitating divertor heat removal. The modeling results indicated that the Li radiation can be quite strong, so that only a small amount of Li (∼a few mol/s) is needed to significantly reduce the divertor peak heat flux for typical reactor parameters. In this paper, we examine an active version of the RLLD, which we term ARLLD, where LL is injected in the upstream region of divertor. We find that the ARLLD has similar effectiveness in reducing the divertor heat flux as the RLLD, again requiring only a few mol/s of LL to significantly reduce the divertor peak heat flux for a reactor. An advantage of the ARLLD is that one can inject LL proactively even in a feedback mode to insure the divertor peak heat flux remains below an acceptable level, providing the first line of defense against excessive divertor heat loads which could result in damage to divertor PFCs. Moreover, the low confinement property of the divertor (i.e.; <1 ms for Li particle confinement time) makes the ARLLD response fast enough to mitigate the effects of possible transient events such as large ELMs.

KW - Divertor

KW - International lithium symposium

KW - Lithium

KW - Plasma-wall interactions

UR - http://www.scopus.com/inward/record.url?scp=84914166995&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84914166995&partnerID=8YFLogxK

U2 - 10.1016/j.fusengdes.2014.05.008

DO - 10.1016/j.fusengdes.2014.05.008

M3 - Article

AN - SCOPUS:84914166995

VL - 89

SP - 2838

EP - 2844

JO - Fusion Engineering and Design

JF - Fusion Engineering and Design

SN - 0920-3796

IS - 12

ER -