Active object localization with deep reinforcement learning

Juan C. Caicedo, Svetlana Lazebnik

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We present an active detection model for localizing objects in scenes. The model is class-specific and allows an agent to focus attention on candidate regions for identifying the correct location of a target object. This agent learns to deform a bounding box using simple transformation actions, with the goal of determining the most specific location of target objects following top-down reasoning. The proposed localization agent is trained using deep reinforcement learning, and evaluated on the Pascal VOC 2007 dataset. We show that agents guided by the proposed model are able to localize a single instance of an object after analyzing only between 11 and 25 regions in an image, and obtain the best detection results among systems that do not use object proposals for object localization.

Original languageEnglish (US)
Title of host publication2015 International Conference on Computer Vision, ICCV 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2488-2496
Number of pages9
ISBN (Electronic)9781467383912
DOIs
StatePublished - Feb 17 2015
Event15th IEEE International Conference on Computer Vision, ICCV 2015 - Santiago, Chile
Duration: Dec 11 2015Dec 18 2015

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
Volume2015 International Conference on Computer Vision, ICCV 2015
ISSN (Print)1550-5499

Other

Other15th IEEE International Conference on Computer Vision, ICCV 2015
Country/TerritoryChile
CitySantiago
Period12/11/1512/18/15

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Active object localization with deep reinforcement learning'. Together they form a unique fingerprint.

Cite this