Acoustic Impulse Responses for Wearable Audio Devices

Ryan M. Corey, Naoki Tsuda, Andrew C. Singer

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We present an open-access dataset of over 8000 acoustic impulse from 160 microphones spread across the body and affixed to wearable accessories. The data can be used to evaluate audio capture and array processing systems using wearable devices such as hearing aids, headphones, eyeglasses, jewelry, and clothing. We analyze the acoustic transfer functions of different parts of the body, measure the effects of clothing worn over microphones, compare measurements from a live human subject to those from a mannequin, and simulate the noise-reduction performance of several beamformers. The results suggest that arrays of microphones spread across the body are more effective than those confined to a single device.

Original languageEnglish (US)
Title of host publication2019 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages216-220
Number of pages5
ISBN (Electronic)9781479981311
DOIs
StatePublished - May 2019
Event44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Brighton, United Kingdom
Duration: May 12 2019May 17 2019

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2019-May
ISSN (Print)1520-6149

Conference

Conference44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019
Country/TerritoryUnited Kingdom
CityBrighton
Period5/12/195/17/19

Keywords

  • Acoustic impulse response
  • audio enhancement
  • hearing aids
  • microphone arrays
  • wearables

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Acoustic Impulse Responses for Wearable Audio Devices'. Together they form a unique fingerprint.

Cite this