TY - GEN
T1 - Accurate High-level Modeling and Automated Hardware/Software Co-design for Effective SoC Design Space Exploration
AU - Zuo, Wei
AU - Pouchet, Louis Noel
AU - Ayupov, Andrey
AU - Kim, Taemin
AU - Lin, Chung Wei
AU - Shiraishi, Shinichi
AU - Chen, Deming
N1 - Publisher Copyright:
© 2017 ACM.
PY - 2017/6/18
Y1 - 2017/6/18
N2 - A desirable feature of a development tool for SoC design is that, given the important applications in the domain to be targeted by the SoC, a powerful hardware-software partitioning engine is available to determine which function(s) shall be mapped to hardware. However, to provide high-quality partitioning, this engine must be able to consider a rich design space of possible alternate hardware and software implementations for each program region candidate for hardware acceleration, in turn making the task of finding the optimal mapping very difficult given the number of design points to consider and the need for accurate modeling of latency, power and area. In this work we propose a novel framework to enable hardware acceleration of performance-critical parts of an application, by addressing the problem of hardware/software partitioning under power and area constraints to minimize the overall program latency. Our flow is based on the LLVM compiler, and focuses on building a scalable compile-Time partitioning algorithm while considering large sets of alternative hardware and software implementations for a particular region. To this end we develop a hybrid approach based on mixing semi-random selection of hardware design points and an Integer Linear Programming formulation of the mapping decision, along with iterative refinements of the solution. Experimental results demonstrate the capability of our approach to consider complex designs and yet output near-optimal partitioning decision. Our package is named RIP (Randomized ILP-based Partitioning), and is open source to benefit the research community.
AB - A desirable feature of a development tool for SoC design is that, given the important applications in the domain to be targeted by the SoC, a powerful hardware-software partitioning engine is available to determine which function(s) shall be mapped to hardware. However, to provide high-quality partitioning, this engine must be able to consider a rich design space of possible alternate hardware and software implementations for each program region candidate for hardware acceleration, in turn making the task of finding the optimal mapping very difficult given the number of design points to consider and the need for accurate modeling of latency, power and area. In this work we propose a novel framework to enable hardware acceleration of performance-critical parts of an application, by addressing the problem of hardware/software partitioning under power and area constraints to minimize the overall program latency. Our flow is based on the LLVM compiler, and focuses on building a scalable compile-Time partitioning algorithm while considering large sets of alternative hardware and software implementations for a particular region. To this end we develop a hybrid approach based on mixing semi-random selection of hardware design points and an Integer Linear Programming formulation of the mapping decision, along with iterative refinements of the solution. Experimental results demonstrate the capability of our approach to consider complex designs and yet output near-optimal partitioning decision. Our package is named RIP (Randomized ILP-based Partitioning), and is open source to benefit the research community.
UR - http://www.scopus.com/inward/record.url?scp=85023596883&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85023596883&partnerID=8YFLogxK
U2 - 10.1145/3061639.3062195
DO - 10.1145/3061639.3062195
M3 - Conference contribution
AN - SCOPUS:85023596883
T3 - Proceedings - Design Automation Conference
BT - Proceedings of the 54th Annual Design Automation Conference 2017, DAC 2017
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 54th Annual Design Automation Conference, DAC 2017
Y2 - 18 June 2017 through 22 June 2017
ER -