TY - GEN
T1 - ABM
T2 - 2022 IEEE International Conference on Big Data, Big Data 2022
AU - Xu, Weikai
AU - Liu, Lihui
AU - Tong, Hanghang
N1 - ACKNOWLEDGEMENT This work is supported by NSF (1947135, and 2134079 ), the NSF Program on Fairness in AI in collaboration with Amazon (1939725), DARPA (HR001121C0165), NIFA (2020-67021-32799), and ARO (W911NF2110088). The content of the information in this document does not necessarily reflect the position or the policy of the Government or Amazon, and no official endorsement should be inferred. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation here on.
PY - 2022
Y1 - 2022
N2 - Knowledge graph is ubiquitous and plays an important role in many real-world applications, including recommender systems, question answering, fact-checking, and so on. However, most of the knowledge graphs are incomplete which can hamper their practical usage. Fortunately, knowledge graph completion (KGC) can mitigate this problem by inferring missing edges in the knowledge graph according to the existing information. In this paper, we propose a novel KGC method named ABM (Attention-Based Message passing) which focuses on predicting the relation between any two entities in a knowledge graph. The proposed ABM consists of three integral parts, including (1) context embedding, (2) structure embedding, and (3) path embedding. In the context embedding, the proposed ABM generalizes the existing message passing neural network to update the node embedding and the edge embedding to assimilate the knowledge of nodes' neighbors, which captures the relative role information of the edge that we want to predict. In the structure embedding, the proposed method overcomes the shortcomings of the existing GNN method (i.e., most methods ignore the structural similarity between nodes.) by assigning different attention weights to different nodes while doing the aggregation. Path embedding generates paths between any two entities and treats these paths as sequences. Then, the sequence can be used as the input of the Transformer to update the embedding of the knowledge graph to gather the global role of the missing edges. By utilizing these three mutually complementary strategies, the proposed ABM is able to capture both the local and global information which in turn leads to a superb performance. Experiment results show that ABM outperforms baseline methods on a wide range of datasets.
AB - Knowledge graph is ubiquitous and plays an important role in many real-world applications, including recommender systems, question answering, fact-checking, and so on. However, most of the knowledge graphs are incomplete which can hamper their practical usage. Fortunately, knowledge graph completion (KGC) can mitigate this problem by inferring missing edges in the knowledge graph according to the existing information. In this paper, we propose a novel KGC method named ABM (Attention-Based Message passing) which focuses on predicting the relation between any two entities in a knowledge graph. The proposed ABM consists of three integral parts, including (1) context embedding, (2) structure embedding, and (3) path embedding. In the context embedding, the proposed ABM generalizes the existing message passing neural network to update the node embedding and the edge embedding to assimilate the knowledge of nodes' neighbors, which captures the relative role information of the edge that we want to predict. In the structure embedding, the proposed method overcomes the shortcomings of the existing GNN method (i.e., most methods ignore the structural similarity between nodes.) by assigning different attention weights to different nodes while doing the aggregation. Path embedding generates paths between any two entities and treats these paths as sequences. Then, the sequence can be used as the input of the Transformer to update the embedding of the knowledge graph to gather the global role of the missing edges. By utilizing these three mutually complementary strategies, the proposed ABM is able to capture both the local and global information which in turn leads to a superb performance. Experiment results show that ABM outperforms baseline methods on a wide range of datasets.
KW - Attention
KW - Knowledge Graph Completion
UR - http://www.scopus.com/inward/record.url?scp=85147929151&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85147929151&partnerID=8YFLogxK
U2 - 10.1109/BigData55660.2022.10021003
DO - 10.1109/BigData55660.2022.10021003
M3 - Conference contribution
AN - SCOPUS:85147929151
T3 - Proceedings - 2022 IEEE International Conference on Big Data, Big Data 2022
SP - 339
EP - 348
BT - Proceedings - 2022 IEEE International Conference on Big Data, Big Data 2022
A2 - Tsumoto, Shusaku
A2 - Ohsawa, Yukio
A2 - Chen, Lei
A2 - Van den Poel, Dirk
A2 - Hu, Xiaohua
A2 - Motomura, Yoichi
A2 - Takagi, Takuya
A2 - Wu, Lingfei
A2 - Xie, Ying
A2 - Abe, Akihiro
A2 - Raghavan, Vijay
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 17 December 2022 through 20 December 2022
ER -