ABM: Attention-based Message Passing Network for Knowledge Graph Completion

Weikai Xu, Lihui Liu, Hanghang Tong

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Knowledge graph is ubiquitous and plays an important role in many real-world applications, including recommender systems, question answering, fact-checking, and so on. However, most of the knowledge graphs are incomplete which can hamper their practical usage. Fortunately, knowledge graph completion (KGC) can mitigate this problem by inferring missing edges in the knowledge graph according to the existing information. In this paper, we propose a novel KGC method named ABM (Attention-Based Message passing) which focuses on predicting the relation between any two entities in a knowledge graph. The proposed ABM consists of three integral parts, including (1) context embedding, (2) structure embedding, and (3) path embedding. In the context embedding, the proposed ABM generalizes the existing message passing neural network to update the node embedding and the edge embedding to assimilate the knowledge of nodes' neighbors, which captures the relative role information of the edge that we want to predict. In the structure embedding, the proposed method overcomes the shortcomings of the existing GNN method (i.e., most methods ignore the structural similarity between nodes.) by assigning different attention weights to different nodes while doing the aggregation. Path embedding generates paths between any two entities and treats these paths as sequences. Then, the sequence can be used as the input of the Transformer to update the embedding of the knowledge graph to gather the global role of the missing edges. By utilizing these three mutually complementary strategies, the proposed ABM is able to capture both the local and global information which in turn leads to a superb performance. Experiment results show that ABM outperforms baseline methods on a wide range of datasets.

Original languageEnglish (US)
Title of host publicationProceedings - 2022 IEEE International Conference on Big Data, Big Data 2022
EditorsShusaku Tsumoto, Yukio Ohsawa, Lei Chen, Dirk Van den Poel, Xiaohua Hu, Yoichi Motomura, Takuya Takagi, Lingfei Wu, Ying Xie, Akihiro Abe, Vijay Raghavan
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages339-348
Number of pages10
ISBN (Electronic)9781665480451
DOIs
StatePublished - 2022
Externally publishedYes
Event2022 IEEE International Conference on Big Data, Big Data 2022 - Osaka, Japan
Duration: Dec 17 2022Dec 20 2022

Publication series

NameProceedings - 2022 IEEE International Conference on Big Data, Big Data 2022

Conference

Conference2022 IEEE International Conference on Big Data, Big Data 2022
Country/TerritoryJapan
CityOsaka
Period12/17/2212/20/22

Keywords

  • Attention
  • Knowledge Graph Completion

ASJC Scopus subject areas

  • Modeling and Simulation
  • Computer Networks and Communications
  • Information Systems
  • Information Systems and Management
  • Safety, Risk, Reliability and Quality
  • Control and Optimization

Fingerprint

Dive into the research topics of 'ABM: Attention-based Message Passing Network for Knowledge Graph Completion'. Together they form a unique fingerprint.

Cite this