A2-ILT: GPU Accelerated ILT with Spatial Attention Mechanism

Qijing Wang, Bentian Jiang, Martin D.F. Wong, Evangeline F.Y. Young

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Inverse lithography technology (ILT) is one of the promising resolution enhancement techniques (RETs) in modern design-for-manufacturing closure, however, it suffers from huge computational overhead and unaffordable mask writing time. In this paper, we propose A2-ILT, a GPU-accelerated ILT framework with spatial attention mechanism. Based on the previous GPU-accelerated ILT flow, we significantly improve the ILT quality by introducing spatial attention map and on-the-fly mask rectilinearization, and strengthen the robustness by Reinforcement-Learning deployment. Experimental results show that, comparing to the state-of-the-art solutions, A2-ILT achieves 5.06% and 11.60% reduction in printing error and process variation band with a lower mask complexity and superior runtime performance.

Original languageEnglish (US)
Title of host publicationProceedings of the 59th ACM/IEEE Design Automation Conference, DAC 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages967-972
Number of pages6
ISBN (Electronic)9781450391429
DOIs
StatePublished - Jul 10 2022
Externally publishedYes
Event59th ACM/IEEE Design Automation Conference, DAC 2022 - San Francisco, United States
Duration: Jul 10 2022Jul 14 2022

Publication series

NameProceedings - Design Automation Conference
ISSN (Print)0738-100X

Conference

Conference59th ACM/IEEE Design Automation Conference, DAC 2022
Country/TerritoryUnited States
CitySan Francisco
Period7/10/227/14/22

ASJC Scopus subject areas

  • Computer Science Applications
  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Modeling and Simulation

Fingerprint

Dive into the research topics of 'A2-ILT: GPU Accelerated ILT with Spatial Attention Mechanism'. Together they form a unique fingerprint.

Cite this