A Variational Approach to Sampling in Diffusion Processes

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We revisit the work of Mitter and Newton on an information-theoretic interpretation of Bayes' formula through the Gibbs variational principle. This formulation allowed them to pose nonlinear estimation for diffusion processes as a problem in stochastic optimal control, so that the posterior density of the signal given the observation path could be sampled by adding a drift to the signal process. We show that this control-theoretic approach to sampling provides a common mechanism underlying several distinct problems involving diffusion processes, specifically importance sampling using Feynman-Kac averages, time reversal, and Schrödinger bridges.

Original languageEnglish (US)
Title of host publication2024 IEEE 63rd Conference on Decision and Control, CDC 2024
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3323-3328
Number of pages6
ISBN (Electronic)9798350316339
DOIs
StatePublished - 2024
Event63rd IEEE Conference on Decision and Control, CDC 2024 - Milan, Italy
Duration: Dec 16 2024Dec 19 2024

Publication series

NameProceedings of the IEEE Conference on Decision and Control
ISSN (Print)0743-1546
ISSN (Electronic)2576-2370

Conference

Conference63rd IEEE Conference on Decision and Control, CDC 2024
Country/TerritoryItaly
CityMilan
Period12/16/2412/19/24

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Modeling and Simulation
  • Control and Optimization

Fingerprint

Dive into the research topics of 'A Variational Approach to Sampling in Diffusion Processes'. Together they form a unique fingerprint.

Cite this