Abstract
We develop a mathematical model within a game theoretical framework for variable rate real time traffic at a bottleneck node. We address not only the flow control problem, but also pricing and allocation of a single resource among users. A distributed, end-to-end flow control is proposed by introducing a cost function, defined as the difference of pricing and utility functions. For two different utility functions, there exists a unique Nash equilibrium in the underlying game. The paper also introduces three distributed update algorithms, parallel, random and gradient update, which are globally stable under reasonable conditions. The convergence properties and robustness of each algorithm are studied through extensive simulations.
Original language | English (US) |
---|---|
Pages (from-to) | 234-245 |
Number of pages | 12 |
Journal | Proceedings of SPIE - The International Society for Optical Engineering |
Volume | 4211 |
DOIs | |
State | Published - 2001 |
Event | Internet Quality and Performance and Control of Network Systems - Boston, MA, United States Duration: Nov 6 2000 → Nov 7 2000 |
Keywords
- Flow control
- Game theory
- Nash equilibrium
- Pricing
- Real time traffic
- Resource allocation
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Computer Science Applications
- Applied Mathematics
- Electrical and Electronic Engineering