A Unified Meta-Learning Framework for Dynamic Transfer Learning

Jun Wu, Jingrui He

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Transfer learning refers to the transfer of knowledge or information from a relevant source task to a target task. However, most existing works assume both tasks are sampled from a stationary task distribution, thereby leading to the sub-optimal performance for dynamic tasks drawn from a non-stationary task distribution in real scenarios. To bridge this gap, in this paper, we study a more realistic and challenging transfer learning setting with dynamic tasks, i.e., source and target tasks are continuously evolving over time. We theoretically show that the expected error on the dynamic target task can be tightly bounded in terms of source knowledge and consecutive distribution discrepancy across tasks. This result motivates us to propose a generic meta-learning framework L2E for modeling the knowledge transferability on dynamic tasks. It is centered around a task-guided meta-learning problem with a group of meta-pairs of tasks, based on which we are able to learn the prior model initialization for fast adaptation on the newest target task. L2E enjoys the following properties: (1) effective knowledge transferability across dynamic tasks; (2) fast adaptation to the new target task; (3) mitigation of catastrophic forgetting on historical target tasks; and (4) flexibility in incorporating any existing static transfer learning algorithms. Extensive experiments on various image data sets demonstrate the effectiveness of the proposed L2E framework.

Original languageEnglish (US)
Title of host publicationProceedings of the 31st International Joint Conference on Artificial Intelligence, IJCAI 2022
EditorsLuc De Raedt, Luc De Raedt
PublisherInternational Joint Conferences on Artificial Intelligence
Pages3573-3579
Number of pages7
ISBN (Electronic)9781956792003
StatePublished - 2022
Event31st International Joint Conference on Artificial Intelligence, IJCAI 2022 - Vienna, Austria
Duration: Jul 23 2022Jul 29 2022

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
ISSN (Print)1045-0823

Conference

Conference31st International Joint Conference on Artificial Intelligence, IJCAI 2022
Country/TerritoryAustria
CityVienna
Period7/23/227/29/22

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'A Unified Meta-Learning Framework for Dynamic Transfer Learning'. Together they form a unique fingerprint.

Cite this