Abstract

Unsupervised speech recognition (ASR-U) is the problem of learning automatic speech recognition (ASR) systems from unpaired speech-only and text-only corpora. While various algorithms exist to solve this problem, a theoretical framework is missing to study their properties and address such issues as sensitivity to hyperparameters and training instability. In this paper, we proposed a general theoretical framework to study the properties of ASR-U systems based on random matrix theory and the theory of neural tangent kernels. Such a framework allows us to prove various learnability conditions and sample complexity bounds of ASR-U. Extensive ASR-U experiments on synthetic languages with three classes of transition graphs provide strong empirical evidence for our theory (code available at cactuswiththoughts/UnsupASRTheory.git).

Original languageEnglish (US)
Title of host publicationLong Papers
PublisherAssociation for Computational Linguistics (ACL)
Pages1192-1215
Number of pages24
ISBN (Electronic)9781959429722
StatePublished - 2023
Event61st Annual Meeting of the Association for Computational Linguistics, ACL 2023 - Toronto, Canada
Duration: Jul 9 2023Jul 14 2023

Publication series

NameProceedings of the Annual Meeting of the Association for Computational Linguistics
Volume1
ISSN (Print)0736-587X

Conference

Conference61st Annual Meeting of the Association for Computational Linguistics, ACL 2023
Country/TerritoryCanada
CityToronto
Period7/9/237/14/23

ASJC Scopus subject areas

  • Computer Science Applications
  • Linguistics and Language
  • Language and Linguistics

Fingerprint

Dive into the research topics of 'A Theory of Unsupervised Speech Recognition'. Together they form a unique fingerprint.

Cite this