A subtype of oral, laryngeal, esophageal, and lung, squamous cell carcinoma with high levels of TrkB-T1 neurotrophin receptor mRNA

Yalu Zhou, Saurabh Sinha, Joel L. Schwartz, Guy R. Adami

Research output: Contribution to journalArticle

Abstract

Background: The NTRK2 genetic locus encodes neurotrophin membrane receptors that play an important role in normal neural tissue plasticity, growth, and survival. One NTRK2-encoded protein is TrkB-FL, which can regulate multiple pathways relevant to cancer. A second NTRK2 gene mRNA isoform encodes TrkB-T1, a receptor that has a different cytoplasmic domain encoded in a mRNA with a unique 3′ terminal exon. Method: Tumors from The Cancer Genome Atlas (TCGA) and other studies were classified according to the expression of a single form of NTRK2 mRNA, TrkB-T1, identified by its unique 3′ terminal exon. Analysis of differentially expressed genes in TrkB-T1 high expressers was done to determine if tumors enriched for TrkB-T1 mRNA were a uniform group independent of anatomic site. Results: The mRNA for TrkB-T1 is the most abundant NTRK2 gene mRNA in all squamous cell carcinomas (SCCs) in the TCGA database. Comparison of larynx SCC high TrkB-T1 RNA expressers to low expressers (n = 96) revealed gene expression differences consistent with the high TrkB-T1 tumors being more neural-like. The upregulated genes in the TrkB-T1 RNA high expressers also showed enrichment of pathways involved in retinol metabolism, hedgehog signaling, and the Nfe2l2 response, among other pathways. An examination of oral, esophagus, and lung SCCs (n = 284, 97, 501) showed induction of the same pathways among tumors that expressed high levels of TrkB-T1 mRNA. Proteins associated with regulation of the sonic hedgehog pathway, and the Nfe2l2 response, Tp63, and Keap1 and p62/SQSTM1 proteins, showed differential expression in larynx, oral and lung high TrkB1-T1 expresser SCCs. Unexpectantly, the relationship of high level TrkB-T1 expression to patient outcomes was SCC anatomic site specific. High TrkB-T1 mRNA levels in laryngeal SCC correlated with poor survival, but the opposite was true for lung SCC. This may be because pathways enriched in the TrkB high expressers, like those involving oncogenes NFE2L2, PIK3CA, and SOX2, are known to have SCC anatomic site-specific effects on progression. Conclusions: High level TrkB-T1 mRNA is a marker of a distinct SCC subtype enriched for at least 3 pathways relevant to tumor progression: Nfe2l2 response, retinol metabolism, and hedgehog signaling.

Original languageEnglish (US)
Article number607
JournalBMC Cancer
Volume19
Issue number1
DOIs
StatePublished - Jun 20 2019

Fingerprint

Nerve Growth Factor Receptors
Squamous Cell Carcinoma
Lung
Messenger RNA
Neoplasms
Atlases
Larynx
Vitamin A
Genes
Exons
Genome
RNA
RNA Isoforms
Esophageal Squamous Cell Carcinoma
Oral Diagnosis
Proteins
Neuronal Plasticity
Genetic Loci
Oncogenes
Esophagus

Keywords

  • NFE2L2
  • NTRK2
  • PIK3CA
  • SOX2
  • Sonic hedgehog
  • Squamous cell carcinoma
  • TRKB-T1

ASJC Scopus subject areas

  • Genetics
  • Oncology
  • Cancer Research

Cite this

A subtype of oral, laryngeal, esophageal, and lung, squamous cell carcinoma with high levels of TrkB-T1 neurotrophin receptor mRNA. / Zhou, Yalu; Sinha, Saurabh; Schwartz, Joel L.; Adami, Guy R.

In: BMC Cancer, Vol. 19, No. 1, 607, 20.06.2019.

Research output: Contribution to journalArticle

@article{eb75e22748744651a3d4aaa54490a47c,
title = "A subtype of oral, laryngeal, esophageal, and lung, squamous cell carcinoma with high levels of TrkB-T1 neurotrophin receptor mRNA",
abstract = "Background: The NTRK2 genetic locus encodes neurotrophin membrane receptors that play an important role in normal neural tissue plasticity, growth, and survival. One NTRK2-encoded protein is TrkB-FL, which can regulate multiple pathways relevant to cancer. A second NTRK2 gene mRNA isoform encodes TrkB-T1, a receptor that has a different cytoplasmic domain encoded in a mRNA with a unique 3′ terminal exon. Method: Tumors from The Cancer Genome Atlas (TCGA) and other studies were classified according to the expression of a single form of NTRK2 mRNA, TrkB-T1, identified by its unique 3′ terminal exon. Analysis of differentially expressed genes in TrkB-T1 high expressers was done to determine if tumors enriched for TrkB-T1 mRNA were a uniform group independent of anatomic site. Results: The mRNA for TrkB-T1 is the most abundant NTRK2 gene mRNA in all squamous cell carcinomas (SCCs) in the TCGA database. Comparison of larynx SCC high TrkB-T1 RNA expressers to low expressers (n = 96) revealed gene expression differences consistent with the high TrkB-T1 tumors being more neural-like. The upregulated genes in the TrkB-T1 RNA high expressers also showed enrichment of pathways involved in retinol metabolism, hedgehog signaling, and the Nfe2l2 response, among other pathways. An examination of oral, esophagus, and lung SCCs (n = 284, 97, 501) showed induction of the same pathways among tumors that expressed high levels of TrkB-T1 mRNA. Proteins associated with regulation of the sonic hedgehog pathway, and the Nfe2l2 response, Tp63, and Keap1 and p62/SQSTM1 proteins, showed differential expression in larynx, oral and lung high TrkB1-T1 expresser SCCs. Unexpectantly, the relationship of high level TrkB-T1 expression to patient outcomes was SCC anatomic site specific. High TrkB-T1 mRNA levels in laryngeal SCC correlated with poor survival, but the opposite was true for lung SCC. This may be because pathways enriched in the TrkB high expressers, like those involving oncogenes NFE2L2, PIK3CA, and SOX2, are known to have SCC anatomic site-specific effects on progression. Conclusions: High level TrkB-T1 mRNA is a marker of a distinct SCC subtype enriched for at least 3 pathways relevant to tumor progression: Nfe2l2 response, retinol metabolism, and hedgehog signaling.",
keywords = "NFE2L2, NTRK2, PIK3CA, SOX2, Sonic hedgehog, Squamous cell carcinoma, TRKB-T1",
author = "Yalu Zhou and Saurabh Sinha and Schwartz, {Joel L.} and Adami, {Guy R.}",
year = "2019",
month = "6",
day = "20",
doi = "10.1186/s12885-019-5789-8",
language = "English (US)",
volume = "19",
journal = "BMC Cancer",
issn = "1471-2407",
publisher = "BioMed Central",
number = "1",

}

TY - JOUR

T1 - A subtype of oral, laryngeal, esophageal, and lung, squamous cell carcinoma with high levels of TrkB-T1 neurotrophin receptor mRNA

AU - Zhou, Yalu

AU - Sinha, Saurabh

AU - Schwartz, Joel L.

AU - Adami, Guy R.

PY - 2019/6/20

Y1 - 2019/6/20

N2 - Background: The NTRK2 genetic locus encodes neurotrophin membrane receptors that play an important role in normal neural tissue plasticity, growth, and survival. One NTRK2-encoded protein is TrkB-FL, which can regulate multiple pathways relevant to cancer. A second NTRK2 gene mRNA isoform encodes TrkB-T1, a receptor that has a different cytoplasmic domain encoded in a mRNA with a unique 3′ terminal exon. Method: Tumors from The Cancer Genome Atlas (TCGA) and other studies were classified according to the expression of a single form of NTRK2 mRNA, TrkB-T1, identified by its unique 3′ terminal exon. Analysis of differentially expressed genes in TrkB-T1 high expressers was done to determine if tumors enriched for TrkB-T1 mRNA were a uniform group independent of anatomic site. Results: The mRNA for TrkB-T1 is the most abundant NTRK2 gene mRNA in all squamous cell carcinomas (SCCs) in the TCGA database. Comparison of larynx SCC high TrkB-T1 RNA expressers to low expressers (n = 96) revealed gene expression differences consistent with the high TrkB-T1 tumors being more neural-like. The upregulated genes in the TrkB-T1 RNA high expressers also showed enrichment of pathways involved in retinol metabolism, hedgehog signaling, and the Nfe2l2 response, among other pathways. An examination of oral, esophagus, and lung SCCs (n = 284, 97, 501) showed induction of the same pathways among tumors that expressed high levels of TrkB-T1 mRNA. Proteins associated with regulation of the sonic hedgehog pathway, and the Nfe2l2 response, Tp63, and Keap1 and p62/SQSTM1 proteins, showed differential expression in larynx, oral and lung high TrkB1-T1 expresser SCCs. Unexpectantly, the relationship of high level TrkB-T1 expression to patient outcomes was SCC anatomic site specific. High TrkB-T1 mRNA levels in laryngeal SCC correlated with poor survival, but the opposite was true for lung SCC. This may be because pathways enriched in the TrkB high expressers, like those involving oncogenes NFE2L2, PIK3CA, and SOX2, are known to have SCC anatomic site-specific effects on progression. Conclusions: High level TrkB-T1 mRNA is a marker of a distinct SCC subtype enriched for at least 3 pathways relevant to tumor progression: Nfe2l2 response, retinol metabolism, and hedgehog signaling.

AB - Background: The NTRK2 genetic locus encodes neurotrophin membrane receptors that play an important role in normal neural tissue plasticity, growth, and survival. One NTRK2-encoded protein is TrkB-FL, which can regulate multiple pathways relevant to cancer. A second NTRK2 gene mRNA isoform encodes TrkB-T1, a receptor that has a different cytoplasmic domain encoded in a mRNA with a unique 3′ terminal exon. Method: Tumors from The Cancer Genome Atlas (TCGA) and other studies were classified according to the expression of a single form of NTRK2 mRNA, TrkB-T1, identified by its unique 3′ terminal exon. Analysis of differentially expressed genes in TrkB-T1 high expressers was done to determine if tumors enriched for TrkB-T1 mRNA were a uniform group independent of anatomic site. Results: The mRNA for TrkB-T1 is the most abundant NTRK2 gene mRNA in all squamous cell carcinomas (SCCs) in the TCGA database. Comparison of larynx SCC high TrkB-T1 RNA expressers to low expressers (n = 96) revealed gene expression differences consistent with the high TrkB-T1 tumors being more neural-like. The upregulated genes in the TrkB-T1 RNA high expressers also showed enrichment of pathways involved in retinol metabolism, hedgehog signaling, and the Nfe2l2 response, among other pathways. An examination of oral, esophagus, and lung SCCs (n = 284, 97, 501) showed induction of the same pathways among tumors that expressed high levels of TrkB-T1 mRNA. Proteins associated with regulation of the sonic hedgehog pathway, and the Nfe2l2 response, Tp63, and Keap1 and p62/SQSTM1 proteins, showed differential expression in larynx, oral and lung high TrkB1-T1 expresser SCCs. Unexpectantly, the relationship of high level TrkB-T1 expression to patient outcomes was SCC anatomic site specific. High TrkB-T1 mRNA levels in laryngeal SCC correlated with poor survival, but the opposite was true for lung SCC. This may be because pathways enriched in the TrkB high expressers, like those involving oncogenes NFE2L2, PIK3CA, and SOX2, are known to have SCC anatomic site-specific effects on progression. Conclusions: High level TrkB-T1 mRNA is a marker of a distinct SCC subtype enriched for at least 3 pathways relevant to tumor progression: Nfe2l2 response, retinol metabolism, and hedgehog signaling.

KW - NFE2L2

KW - NTRK2

KW - PIK3CA

KW - SOX2

KW - Sonic hedgehog

KW - Squamous cell carcinoma

KW - TRKB-T1

UR - http://www.scopus.com/inward/record.url?scp=85067569479&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85067569479&partnerID=8YFLogxK

U2 - 10.1186/s12885-019-5789-8

DO - 10.1186/s12885-019-5789-8

M3 - Article

C2 - 31221127

AN - SCOPUS:85067569479

VL - 19

JO - BMC Cancer

JF - BMC Cancer

SN - 1471-2407

IS - 1

M1 - 607

ER -