A study on biodiesel NOx emission control with the reduced chemical kinetics model

Juncheng Li, Chia Fon F. Lee, Zhiyu Han, Cai Shen, Mianzhi Wang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, the effects of the start of injection (SOI) timing and EGR rate on the nitrogen oxide (NOx) emissions of biodiesel-powered diesel engine are studied with computational fluid dynamics (CFD) coupling with a chemical kinetics model. A surrogate biodiesel mechanism consisting of two fuel components is employed as the combustion model of soybean biodiesel. The in-cylinder combustion processes of the cases with four injection timings and three exhaust gas recirculation (EGR) rates are simulated. The simulation results show that the NOx emissions of biodiesel combustion can be effectively improved by SOI retardation or increasing EGR rate. The calculated NOx emissions of the cases with default EGR rate are reduced by 20.3% and 32.9% when the injection timings are delayed by 2-degree and 4-degree crank angle, respectively. The calculated NOx emissions of the cases with 24.0% and 28.0% EGR are reduced by 38.4% and 62.8%, respectively, compared to that of the case with default SOI and 19.2% EGR. But higher EGR rate deteriorates the soot emission. When EGR rate is 28.0% and SOI is advanced by 2-degree, the NOx emission is reduced by 55.1% and soot emission is controlled as that of the case with 24% EGR and default SOI.

Original languageEnglish (US)
Title of host publicationFuels; Numerical Simulation; Engine Design, Lubrication, and Applications
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Print)9780791856109
DOIs
StatePublished - 2013
EventASME 2013 Internal Combustion Engine Division Fall Technical Conference, ICEF 2013 - Dearborn, MI, United States
Duration: Oct 13 2013Oct 16 2013

Publication series

NameASME 2013 Internal Combustion Engine Division Fall Technical Conference, ICEF 2013
Volume2

Other

OtherASME 2013 Internal Combustion Engine Division Fall Technical Conference, ICEF 2013
Country/TerritoryUnited States
CityDearborn, MI
Period10/13/1310/16/13

ASJC Scopus subject areas

  • Automotive Engineering

Fingerprint

Dive into the research topics of 'A study on biodiesel NOx emission control with the reduced chemical kinetics model'. Together they form a unique fingerprint.

Cite this