A study of burst wakes in a multielement airfoil flowfield

Brent W. Pomeroy, Phillip J Ansell, Jeffrey M. Diebold, Michael S Selig

Research output: Contribution to conferencePaperpeer-review


High lift multielement airfoils, such as those used on large transport aircraft during takeoff and landing, can generate strong adverse pressure gradients that, while the surface flow is attached, can cause off-the-surface separation in the wake, so called, wake bursting. The sudden expansion and thickening of the separated wakes has been shown to decrease lift and increase drag. Wake bursting was experimentally studied over a three-element high lift airfoil, and unsteady velocity measurements were taken with a split film probe. The tests were performed in the University of Illinois low-speed low-turbulence subsonic wind tunnel on a multielement airfoil having a chord length of 1.35 ft (0.411 m) and a model span of 2.8 ft (0.85 m). Results for a Reynolds number of 1×106 indicate that wake bursting was observed for the wake of the main element and the first flap. A methodology was developed to numerically define the core of each wake both upstream and downstream of the burst point. Data show that the local flowfield angle in the wake core does not significantly change relative to the flowfield outside the wake core. Unsteady results indicate that the velocity fluctuations within the burst wake region are dominated by turbulence in the shear layers between the wakes with less turbulence observed in the wake cores. These turbulent fluctuations were largest in the shear layers and were observed to spread into the wake cores.

Original languageEnglish (US)
StatePublished - Sep 16 2013
Event31st AIAA Applied Aerodynamics Conference - San Diego, CA, United States
Duration: Jun 24 2013Jun 27 2013


Other31st AIAA Applied Aerodynamics Conference
Country/TerritoryUnited States
CitySan Diego, CA

ASJC Scopus subject areas

  • Aerospace Engineering
  • Mechanical Engineering


Dive into the research topics of 'A study of burst wakes in a multielement airfoil flowfield'. Together they form a unique fingerprint.

Cite this