A spatial assessment of urban waterlogging risk based on a Weighted Naïve Bayes classifier

Xianzhe Tang, Yuqin Shu, Yanqing Lian, Yaolong Zhao, Yingchun Fu

Research output: Contribution to journalArticle

Abstract

Urban waterlogging occurs frequently and often causes considerable damage that seriously affects the natural environment, human life, and the social economy. The spatial evaluation of urban waterlogging risk represents an essential analytic step that can be used to prevent urban waterlogging and minimize related losses. The Weighted Naïve Bayes (WNB) classifier is a powerful method for knowledge discovery and probability inference under conditions of uncertainty; a WNB classifier can be applied to estimate the likelihood of hazards. Six spatial factors were considered to be added to the WNB, which may improve the efficiency in predicting urban waterlogging risk during analysis. As such, a spatial framework integrating WNB with GIS was developed to assess the risk of urban waterlogging using the primary urban area of Guangzhou in China as an example. The results show that 1) the rationality of six spatial factors was determined according to the Conditional Probability Tables and weights; 2) the Most Accurate Sampling Table has objectivity; and 3) the areas with a high likelihood of waterlogging risk were mainly located in the southwestern part of the study area. The northeastern zones are relatively free of waterlogging risk. The results reveal a more accurate spatial pattern of urban waterlogging risk that can be used to identify risk “hot spots”. The resulting gridded estimates provide a realistic reference for decision making related to urban waterlogging.

Original languageEnglish (US)
Pages (from-to)264-274
Number of pages11
JournalScience of the Total Environment
Volume630
DOIs
StatePublished - Jul 15 2018

Keywords

  • GIS
  • MAST
  • Spatial framework
  • Spatial pattern

ASJC Scopus subject areas

  • Environmental Engineering
  • Environmental Chemistry
  • Waste Management and Disposal
  • Pollution

Fingerprint Dive into the research topics of 'A spatial assessment of urban waterlogging risk based on a Weighted Naïve Bayes classifier'. Together they form a unique fingerprint.

Cite this