A Smart Bridge Data Analytics Framework for Enhanced Bridge Deterioration Prediction

Kaijian Liu, Nora El-Gohary

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

A large amount of data about bridge conditions and maintenance actions, and related factors, are being collected each year. Such data include bridge inventory data, traffic and weather data, and unstructured textual bridge inspection reports. The wealth of these heterogeneous data from multiple sources offers great promise to data analytics for better predicting bridge deterioration. However, existing data-driven bridge deterioration prediction approaches mostly focus on learning from a single type of data from a single source - mainly the National Bridge Inventory (NBI) data. They are limited in learning from multi-type and multi-source data, which collectively cover a large number of factors that affect the deterioration of bridges. To address this limitation, this paper proposes a novel smart bridge data analytics framework. The framework includes three primary components: (1) information extraction: information about bridge conditions and maintenance actions is extracted from unstructured textual inspection reports; (2) data integration: the data/information extracted from the reports are linked and fused, and integrated with bridge inventory, traffic, and weather data; and (3) data analytics: bridge deterioration is predicted based on the integrated data. This paper focuses on presenting the proposed framework and its preliminary experimental evaluation results. The results show that, by learning from integrated bridge data, the proposed framework achieved an average prediction precision and recall of 82.8% and 78.2%, respectively, compared to 71.5% and 60.2% when only learning from NBI data.

Original languageEnglish (US)
Title of host publicationConstruction Research Congress 2020
Subtitle of host publicationComputer Applications - Selected Papers from the Construction Research Congress 2020
EditorsPingbo Tang, David Grau, Mounir El Asmar
PublisherAmerican Society of Civil Engineers
Pages1194-1202
Number of pages9
ISBN (Electronic)9780784482865
StatePublished - 2020
Externally publishedYes
EventConstruction Research Congress 2020: Computer Applications - Tempe, United States
Duration: Mar 8 2020Mar 10 2020

Publication series

NameConstruction Research Congress 2020: Computer Applications - Selected Papers from the Construction Research Congress 2020

Conference

ConferenceConstruction Research Congress 2020: Computer Applications
Country/TerritoryUnited States
CityTempe
Period3/8/203/10/20

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Building and Construction

Cite this