A single amino acid mutation in the mouse MEIG1 protein disrupts a cargo transport system necessary for sperm formation

Wei Li, Qian Huang, Ling Zhang, Hong Liu, David Zhang, Shuo Yuan, Yitian Yap, Wei Qu, Rita Shiang, Shizheng Song, Rex A. Hess, Zhibing Zhang

Research output: Contribution to journalArticlepeer-review

Abstract

Mammalian spermatogenesis is a highly coordinated process that requires cooperation between specific proteins to coordinate diverse biological functions. For example, mouse Parkin coregulated gene (PACRG) recruits meiosis-expressed gene 1 (MEIG1) to the manchette during normal spermiogenesis. Here we mutated Y68 of MEIG1 using the CRISPR/cas9 system and examined the biological and physiological consequences in mice. All homozygous mutant males examined were completely infertile, and sperm count was dramatically reduced. The few developed sperm were immotile and displayed multiple abnormalities. Histological staining showed impaired spermiogenesis in these mutant mice. Immunofluorescent staining further revealed that this mutant MEIG1 was still present in the cell body of spermatocytes, but also that more MEIG1 accumulated in the acrosome region of round spermatids. The mutant MEIG1 and a cargo protein of the MEIG1/PACRG complex, sperm-associated antigen 16L (SPAG16L), were no longer found to be present in the manchette; however, localization of the PACRG component was not changed in the mutants. These findings demonstrate that Y68 of MEIG1 is a key amino acid required for PACRG to recruit MEIG1 to the manchette to transport cargo proteins during sperm flagella formation. Given that MEIG1 and PACRG are conserved in humans, small molecules that block MEIG1/PACRG interaction are likely ideal targets for the development of male contraconception drugs.

Original languageEnglish (US)
Article number101312
JournalJournal of Biological Chemistry
Volume297
Issue number5
DOIs
StatePublished - Nov 1 2021

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'A single amino acid mutation in the mouse MEIG1 protein disrupts a cargo transport system necessary for sperm formation'. Together they form a unique fingerprint.

Cite this