A simulation of operational damage for wind turbine blades

Giovanni Fiore, Michael S. Selig

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

A numerical study of how to simulate airborne particle collisions with a 38-m, 1.5-MW horizontal axis wind turbine blade is presented. Two types of particles were analyzed, namely insects and sand grains. Computations were performed using a two-dimensional inviscid flowfield solver coupled with a particle position predictor code. Three locations along the blade were considered: 35%span and characterized by a DU 97-W-300 airfoil, 65%span with a DU 96-W-212 airfoil, and 75%span using a DU 96-W-180 airfoil. Insect simulations were performed to estimate the residual debris thickness on the blade, while sand simulations were performed to compute the surface erosion rate. Results show that the particle impact locations along the blade sections are a function of local angle of attack, local freestreamvelocity, airfoil shape, particle mass and aerodynamics. Insects and sand grains were found to collide primarily in the vicinity of the blade leading edge. The volume of insect debris per unit span of the blade was maximum at r/R = 0.75. The erosion rate due to sand grains was maximum on the low pressure side of the wind turbine blade. An erosion rate approximately ten times higher was observed at r/R = 0.75 as compared with the inboard section at r/R = 0.35. In the proximity of the leading edge, steep angles of impact occurred, and erosion rate had a minimum, while it reached maximum values moving slightly downstream along the blade section.

Original languageEnglish (US)
Title of host publication32nd AIAA Applied Aerodynamics Conference
PublisherAmerican Institute of Aeronautics and Astronautics Inc.
ISBN (Print)9781624102882
DOIs
StatePublished - 2014
Event32nd AIAA Applied Aerodynamics Conference 2014 - Atlanta, GA, United States
Duration: Jun 16 2014Jun 20 2014

Publication series

Name32nd AIAA Applied Aerodynamics Conference

Other

Other32nd AIAA Applied Aerodynamics Conference 2014
Country/TerritoryUnited States
CityAtlanta, GA
Period6/16/146/20/14

ASJC Scopus subject areas

  • Aerospace Engineering
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'A simulation of operational damage for wind turbine blades'. Together they form a unique fingerprint.

Cite this