A sharp Schrödinger maximal estimate in R2

Xiumin Du, Larry Guth, Xiaochun Li

Research output: Contribution to journalArticle

Abstract

We show that limt→0 eitΔf(x) = f(x) almost everywhere for all f ∈ Hs(R2) provided that s > 1/3. This result is sharp up to the endpoint. The proof uses polynomial partitioning and decoupling.

Original languageEnglish (US)
Pages (from-to)607-640
Number of pages34
JournalAnnals of Mathematics
Volume186
Issue number2
DOIs
StatePublished - Jan 1 2017

Keywords

  • Decoupling
  • Polynomial partitioning
  • Restriction
  • Schrodinger equation
  • Schrodinger maximal function

ASJC Scopus subject areas

  • Statistics and Probability
  • Statistics, Probability and Uncertainty

Fingerprint Dive into the research topics of 'A sharp Schrödinger maximal estimate in R<sup>2</sup>'. Together they form a unique fingerprint.

  • Cite this