The main contribution of this paper is a novel sensory feedback control law for an octopus arm. The control law is inspired by, and helps integrate, several observations made by biologists. The proposed control law is distinct from prior work which has mainly focused on open-loop control strategies. Several analytical results are described including characterization of the equilibrium and its stability analysis. Numerical simulations demonstrate life-like motion of the soft octopus arm, qualitatively matching behavioral experiments. Quantitative comparison with bend propagation experiments helps provide the first explanation of such canonical motion using a sensory feedback control law. Several remarks are included that help draw parallels with natural pursuit strategies such as motion camouflage or classical pursuit.

Original languageEnglish (US)
Title of host publication2022 IEEE 61st Conference on Decision and Control, CDC 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages8
ISBN (Electronic)9781665467612
StatePublished - 2022
Event61st IEEE Conference on Decision and Control, CDC 2022 - Cancun, Mexico
Duration: Dec 6 2022Dec 9 2022

Publication series

NameProceedings of the IEEE Conference on Decision and Control
ISSN (Print)0743-1546
ISSN (Electronic)2576-2370


Conference61st IEEE Conference on Decision and Control, CDC 2022


  • Octopus
  • bend propagation
  • feedback control
  • pursuit strategies
  • sensorimotor control

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Modeling and Simulation
  • Control and Optimization


Dive into the research topics of 'A Sensory Feedback Control Law for Octopus Arm Movements'. Together they form a unique fingerprint.

Cite this