A scalable and high-density FPGA architecture with multi-level phase change memory

Chunan Wei, Ashutosh Dhar, Deming Chen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

As CMOS technology is stretched to its limits it has become imperative to look to alternative solutions for the next generation of FPGAs. In particular, due to the configurable nature of FPGAs, on-chip memory remains to be a major concern for designers. In this work we explore the use of Phase-Change Memory (PCM). We exploit the ability of PCM to exist in multiple intermediate states to store 2 bits per cell and develop a new Look Up Table (LUT) architecture. The new LUT can either store two functions with shared inputs or a single function with an additional input. We also explore the use of PCM in local routing mechanisms and thus propose a new Configurable Logic Block (CLB) composed of CMOS and PCM. The new design promises significant improvements in logic density and performance with area improvements of over 40% for all LUT sizes and delay improvements of 7% to 13% on an average for LUTs of size 10 to 6.

Original languageEnglish (US)
Title of host publicationProceedings of the 2015 Design, Automation and Test in Europe Conference and Exhibition, DATE 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1365-1370
Number of pages6
ISBN (Electronic)9783981537048
DOIs
StatePublished - Apr 22 2015
Event2015 Design, Automation and Test in Europe Conference and Exhibition, DATE 2015 - Grenoble, France
Duration: Mar 9 2015Mar 13 2015

Publication series

NameProceedings -Design, Automation and Test in Europe, DATE
Volume2015-April
ISSN (Print)1530-1591

Other

Other2015 Design, Automation and Test in Europe Conference and Exhibition, DATE 2015
Country/TerritoryFrance
CityGrenoble
Period3/9/153/13/15

ASJC Scopus subject areas

  • General Engineering

Fingerprint

Dive into the research topics of 'A scalable and high-density FPGA architecture with multi-level phase change memory'. Together they form a unique fingerprint.

Cite this