Abstract
We describe a randomized algorithm for computing the trapezoidal decomposition of a simple polygon. Its expected running time is linear in the size of the polygon. By a well-known and simple linear time reduction, this implies a linear time algorithm for triangulating a simple polygon. Our algorithm is considerably simpler than Chazelle's [3] celebrated optimal deterministic algorithm. The new algorithm can be viewed as a combination of Chazelle's algorithm and of simple nonoptimal randomized algorithms due to Clarkson et al. [6], [7], [9] and to Seidel [20]. As in Chazelle's algorithm, it is indispensable to include a bottom-up preprocessing phase, in addition to the actual top-down construction. An essential new idea is the use of random sampling on subchains of the initial polygonal chain, rather than on individual edges as is normally done.
Original language | English (US) |
---|---|
Pages (from-to) | 245-265 |
Number of pages | 21 |
Journal | Discrete and Computational Geometry |
Volume | 26 |
Issue number | 2 |
DOIs | |
State | Published - Sep 2001 |
Externally published | Yes |
ASJC Scopus subject areas
- Theoretical Computer Science
- Geometry and Topology
- Discrete Mathematics and Combinatorics
- Computational Theory and Mathematics