A Radio Frequency Comb Filter for Sparse Fourier Transform-Based Spectrum Sensing

Ruochen Lu, Tomás Manzaneque, Yansong Yang, Jin Zhou, Haitham Al-Hassanieh, Songbin Gong

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This work demonstrates a passive low-insertion-loss (IL)RF filter with periodic passbands and capable of sparsifying the spectrum from 238 to 526 MHz for sparse Fourier transform (SFT)based spectrum sensing. The demonstrated periodic filter employs LiNbO 3 lateral overtone bulk acoustic resonators (LOBARs)with high-quality factors (Qs), large electromechanical coupling (k t 2 ), and multiple equally spaced resonances in a ladder topology. The fabricated LOBARs show k t 2 larger than 1.5% and figure of merits (k 2 Q) more than 30 for over 10 tones simultaneously and are both among the highest demonstrated in overmoded resonators. The multi-band filter centered at 370 MHz have then been obtained with a passband span of 291 MHz, a spectral spacing of 22 MHz, an IL of 2 dB, FBWs around 0.6%, and a sparsification ratio between 7 and 15. An out-of-band rejection around 25 dB has also been achieved for more than 14 bands. The great performance demonstrated by the RF filter with 14 useable periodic passbands will serve to enable future sparse Fourier transform-based spectrum sensing.

Original languageEnglish (US)
Title of host publication2018 IEEE International Ultrasonics Symposium, IUS 2018
PublisherIEEE Computer Society
ISBN (Electronic)9781538634257
DOIs
StatePublished - Dec 17 2018
Event2018 IEEE International Ultrasonics Symposium, IUS 2018 - Kobe, Japan
Duration: Oct 22 2018Oct 25 2018

Publication series

NameIEEE International Ultrasonics Symposium, IUS
Volume2018-October
ISSN (Print)1948-5719
ISSN (Electronic)1948-5727

Other

Other2018 IEEE International Ultrasonics Symposium, IUS 2018
Country/TerritoryJapan
CityKobe
Period10/22/1810/25/18

Keywords

  • RF filter
  • lateral overtone bulk acoustic resonator
  • lithium niobate
  • piezoelectricity
  • sparse Fourier transform

ASJC Scopus subject areas

  • Acoustics and Ultrasonics

Fingerprint

Dive into the research topics of 'A Radio Frequency Comb Filter for Sparse Fourier Transform-Based Spectrum Sensing'. Together they form a unique fingerprint.

Cite this