A Quantitative Approach for Evaluating Disease Focus and Interpretability of Deep Learning Models for Alzheimer's Disease Classification

Thomas Yu Chow Tam, Litian Liang, Ke Chen, Haohan Wang, Wei Wu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Deep learning (DL) models have shown significant potential in Alzheimer's Disease (AD) classification. However, understanding and interpreting these models remains challenging, which hinders the adoption of these models in clinical practice. Techniques such as saliency maps have been proven effective in providing visual and empirical clues about how these models work, but there still remains a gap in understanding which specific brain regions DL models focus on and whether these brain regions are pathologically associated with AD.To bridge such gap, in this study, we developed a quantitative disease-focusing strategy to first enhance the interpretability of DL models using saliency maps and brain segmentations; then we propose a disease-focus (DF) score that quantifies how much a DL model focuses on brain areas relevant to AD pathology based on clinically known MRI-based pathological regions of AD. Using this strategy, we compared several state-of-the-art DL models, including a baseline 3D ResNet model, a pretrained MedicalNet model, and a MedicalNet with data augmentation to classify patients with AD vs. cognitive normal patients using MRI data; then we evaluated these models in terms of their abilities to focus on disease-relevant regions. Our results show interesting disease-focusing patterns with different models, particularly characteristic patterns with the pretrained models and data augmentation, and also provide insight into their classification performance. These results suggest that the approach we developed for quantitatively assessing the abilities of DL models to focus on disease-relevant regions may help improve the interpretability of these models for AD classification and facilitate their adoption for AD diagnosis in clinical practice. The code is publicly available at https://github.com/Liang-lt/ADNI.

Original languageEnglish (US)
Title of host publicationProceedings - 2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024
EditorsMario Cannataro, Huiru Zheng, Lin Gao, Jianlin Cheng, Joao Luis de Miranda, Ester Zumpano, Xiaohua Hu, Young-Rae Cho, Taesung Park
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5104-5111
Number of pages8
ISBN (Electronic)9798350386226
DOIs
StatePublished - 2024
Event2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024 - Lisbon, Portugal
Duration: Dec 3 2024Dec 6 2024

Publication series

NameProceedings - 2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024

Conference

Conference2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024
Country/TerritoryPortugal
CityLisbon
Period12/3/2412/6/24

Keywords

  • Alzheimer's Disease
  • Brain Segmentations
  • CNN models
  • Interpretable Deep Learning
  • MRI

ASJC Scopus subject areas

  • Artificial Intelligence
  • Biomedical Engineering
  • Modeling and Simulation
  • Medicine (miscellaneous)
  • Computer Vision and Pattern Recognition
  • Health Informatics
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'A Quantitative Approach for Evaluating Disease Focus and Interpretability of Deep Learning Models for Alzheimer's Disease Classification'. Together they form a unique fingerprint.

Cite this